Essential Psychopharmacology
Neuroscientific Basis and Practical Applications
Second Edition
ESSENTIAL
PSYCHOPHARMACOLOGY

Neuroscientific Basis and Practical Applications
Second Edition

STEPHEN M. STAHL, M.D., Ph.D.

Adjunct Professor of Psychiatry
University of California, San Diego

With illustrations
by Nancy
Muntner
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Principles of Chemical Neurotransmission</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Receptors and Enzymes as the Targets of Drug Action</td>
<td>35</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Special Properties of Receptors</td>
<td>77</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Chemical Neurotransmission as the Mediator of Disease Actions</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Depression and Bipolar Disorders</td>
<td>135</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Classical Antidepressants, Serotonin Selective Reuptake Inhibitors, and Noradrenergic Reuptake Inhibitors</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Newer Antidepressants and Mood Stabilizers</td>
<td>245</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Anxiolytics and Sedative-Hypnotics</td>
<td>297</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Drug Treatments for Obsessive-Compulsive Disorder, Panic Disorder, and Phobic Disorders</td>
<td>335</td>
</tr>
</tbody>
</table>

xi
Contents

Chapter 10
Psychosis and Schizophrenia 365

Chapter 11
Antipsychotic Agents 401

Chapter 12
Cognitive Enhancers 459

Chapter 13
Psychopharmacology of Reward and Drugs of Abuse 499

Chapter 14
Sex-Specific and Sexual Function-Related Psychopharmacology 539
Suggested Reading 569
Index 575

CME Post Tests and Evaluations
Sex-Specific and Sexual Function-Related Psychopharmacology

I. Neurotransmitters and the psychopharmacology of the human sexual response
II. Erectile dysfunction
III. Estrogen as a neurotrophic factor in the brain
IV. Estrogen and mood across the female life cycle
V. Cognition, Alzheimer's disease, and the role of estrogen in sex differences
VI. Summary

Psychopharmacology can affect the sexes quite differently. This is just beginning to be recognized and investigated in a systematic manner. This chapter will explore some of the concepts behind treating men and women differently with psychopharmacological agents. One topic that affects both sexes is sexual activity, and this has become of great interest to psychopharmacologists since psychotropic medications are now widely recognized to affect sexual functioning, often negatively. Also, treatments for sexual dysfunction based on altering chemical neurotransmission are becoming available, and therefore the relevant psychopharmacological principles underlying these treatments are reviewed here.

The profound behavioral and neurobiological properties of reproductive hormones, particularly estrogen, are now recognized and are increasingly being exploited for their therapeutic potential in psychopharmacology. These properties will be reviewed in this chapter. Also reviewed here will be the movement to integrate the role of reproductive hormones into psychopharmacology by taking account of a woman's stage in her life cycle (i.e., child, child-bearing potential, pregnant, postpartum, lactating/nursing, perimenopausal, postmenopausal) and whether she is taking estrogens when choosing a psychotropic drug for her.
Libido

The first stage, libido, is linked to desire for sex, or sex drive, and is hypothetically a dopaminergic phenomenon mediated by the mesolimbic dopaminergic "reward center" (Fig. 14—1). This pathway has already been discussed in Chapter 13 and is well known for being the site of action of drugs of abuse as well as the site of...
Sexual arousal in peripheral genitalia is accompanied by **erections** in men and **lubrication and swelling** in women. Both nitric oxide and acetylcholine mediate these actions.

"natural highs" (see Figs. 13—1 and 13—2). This site may not only mediate orgasm but also libidinous desire prior to the sex act.

Prolactin is hypothesized to have a negative influence on sexual desire, which is interesting because there is a generally reciprocal relationship between dopamine and prolactin (as discussed in Chapter 11; see Fig. 11—30). However, the relationship between prolactin and sexual dysfunction is not well documented and relatively poorly understood.

Arousal

The second psychopharmacological stage of the sexual response is arousal (Fig. 14—2)—arousal of peripheral genitalia, that is. In men, that means an erection; in women, it means lubrication and swelling. This type of arousal prepares the genitalia for penetration and sexual intercourse. The message of arousal starts in the brain, is relayed down the spinal cord, then into peripheral autonomic nerve fibers that are both sympathetic and parasympathetic, next into vascular tissues, and finally to the genitalia. Along the way, at least two key neurotransmitters are involved, acetylcholine in the autonomic parasympathetic innervation of the genitalia and nitric oxide, which acts on the smooth muscle of the genitalia. Acetylcholine and nitric oxide both promote erections in men and lubrication and swelling in women. Cholinergic psychopharmacology has been extensively discussed in Chapter 12 (see Figs. 12—8 to 12—10). However, nitric oxide is a relatively recently characterized neurotransmitter system in brain and peripheral tissues, and more detailed discussion of this system will help explain its actions in mediating sexual arousal in the human sexual response.

Nitric Oxide Psychopharmacology

Nitric oxide, a gas, is an improbable compound for a neurotransmitter. It is not an amine, amino acid, or peptide; it is not stored in synaptic vesicles or released by
exocytosis; and it does not interact with specific receptor subtypes in neuronal membranes, but it is "NO laughing matter." Specifically, it is not nitrous oxide (N₂O) or "laughing gas," one of the earliest known anesthetics. Nitric oxide (NO) is a far different gas, although the two of them are often confused. It is NO that is the neurotransmitter, not N₂O. Incredible as it may seem, NO is a poisonous and unstable gas, a component of car fumes, which helps to deplete the ozone layer, yet is also a chemical messenger both in the brain and in blood vessels, including those that control erections in the penis.

Yes, there is NO synthesis by neurons and the penis. Certain neurons and tissues possess the enzyme nitric oxide synthetase (NOS), which forms NO from the amino acid l-arginine (Fig. 14—3). Nitric oxide then diffuses to adjacent neurons or smooth muscle and provokes the formation of the second messenger cyclic guanosine monophosphate (cGMP) by activating the enzyme guanylyl cyclase (GC) (Fig. 14—4). Nitric oxide is not made in advance nor is it stored, but it seems to be made on demand and released by simple diffusion. Glutamate and calcium can trigger the formation of NO by activating NOS.

No, there are no NO membrane receptors, in striking contrast to classical neurotransmitters, which have numerous types and subtypes of membrane receptors on neurons. Rather, the target of NO is iron in the active site of GC (Fig. 14—4). Once NO binds to the iron, GC is activated and cGMP is formed. The action of cGMP is terminated by a family of enzymes known as phosphodiesterases (PDEs), of which there are several forms, depending on the tissue (Fig. 14—5).

Yes, there is NO neurotransmitter function. The first known messenger functions for NO were described in blood vessels. By relaxing smooth muscles in blood vessels of the penis, NO can regulate penile erections, allowing blood to flow into the penis. Nitric oxide also can modulate vascular smooth muscle in cardiac blood vessels and mediate the ability of nitroglycerin to treat cardiac angina. Nitric oxide is also a key regulator of blood pressure, platelet aggregation, and peristalsis. Its central nervous system (CNS) neurotransmitter function remains elusive, but it may be a retrograde neurotransmitter. That is, since presynaptic neurotransmitters activate postsynaptic receptors, it seems logical that communication in this direction should be accompanied by some form of back talk from the postsynaptic site to the presynaptic neuron. The idea is that NO is prompted to be formed in postsynaptic synapses by some presynaptic neurotransmitters and then diffuses back to the presynaptic neuron, carrying information in reverse. Nitric oxide may also be involved in memory formation, neuronal plasticity, and neurotoxicity.

Orgasm

The third stage of the human sexual response is orgasm (Fig. 14—6), accompanied by ejaculation in men. Descending spinal serotonergic fibers exert inhibitory actions on orgasm via 5HT2A receptors (see Fig. 5—57). Descending spinal noradrenergic fibers (Fig. 5—28) and noradrenergic sympathetic innervation of genitalia facilitate ejaculation and orgasm.

In summary, there are three major psychopharmacological stages of the human sexual response (Fig. 14—7). Multiple neurotransmitters mediate these stages, but only some of them are understood. Libido (stage 1) has dopaminergic dimensions to its pharmacology. The mechanism of arousal (stage 2), which is characterized by
FIGURE 14—3. Nitric oxide (NO) is formed by the enzyme nitric oxide synthetase (NOS), which converts the amino acid l-arginine into nitric oxide and l-citrulline.

FIGURE 14—4. Once formed, nitric oxide activates the enzyme guanylyl cyclase (GC) by binding to iron (heme) in the active site of this enzyme. When activated, GC makes a messenger, cyclic guanylate monophosphate (cGMP), which relaxes smooth muscle and performs other physiological functions. In the penis, relaxation of vascular smooth muscle opens blood flow and causes an erection.
FIGURE 14—5. The action of cGMP is terminated by the enzyme phosphodiesterase. In the penis, the type of phosphodiesterase is type V (PDE V).

FIGURE 14—7. The neurotransmitters involved in the three stages of the psychopharmacology of the human sexual response are summarized here. In stage 1, libido, dopamine exerts a positive influence and prolactin a negative effect. In stage 2, arousal correlates with erections in men and lubrication and swelling in women. Both nitric oxide and acetylcholine facilitate sexual arousal. In stage 3, orgasm, which is associated with ejaculation in men, is inhibited by serotonin and facilitated by norepinephrine.

erection in men and lubrication and swelling in women, involves both cholinergic and nitric oxide pharmacology. Finally, orgasm (stage 3), with ejaculation in men, involves both inhibitory serotonergic input and excitatory noradrenergic input. Although sexual functioning is certainly complex and there are many overlapping functions of these neurotransmitters as well as exceptions to the rules, there are general principles of neurotransmission for each of the various stages of the human sexual response, some of which are reviewed in Figure 14—7.

Erectile Dysfunction

Impotence, the inability to maintain an erection sufficient for intercourse, is more properly called erectile dysfunction. Up to 20 million men in the United States have this problem to some degree. Another way of stating the problem is that for normal men living in the community who are between 40 and 70 years old, only about half do not have some degree of erectile dysfunction (Fig. 14—8). The problem worsens with age (Fig. 14—9), since 39% of 40-year-olds have some degree of impotence (5% are completely impotent), but by age 70 two-thirds have some degree of impotence (and complete impotence triples to 15%). The multiple causes of erectile
dysfunction include vascular insufficiency, various neurological causes, endocrine pathology (especially diabetes mellitus, but also reproductive hormone and thyroid problems), drugs, local pathology in the penis, and psychological and psychiatric problems.

Until recently, psychopharmacologists were not very useful members of the treatment team for patients with erectile dysfunction, other than to stop the medications they had been prescribing. Effective treatment of "organic" causes of erectile dysfunction until recently was often elusive and usually involved a urological approach, such as prostheses and implants. The old-fashioned surgical strategy bypasses diseased peripheral nerves and inadequate vascular blood supply to the penis to create erections mechanically and on demand, but this approach has serious limitations in terms of patient and partner acceptability. In men who have a "functional" etiology to their erectile dysfunction, the treatment strategy has traditionally taken a psychodynamic and behavioral approach, with attention to partners and functional disorders, psychoeducation, lifestyle changes, and where appropriate, starting (or stopping) psychotropic drugs to treat associated disorders. The typical case of erectile dysfunction, however, has neither a single "organic" cause nor a single "functional" cause but is usually caused by some combination of problems, including use of alcohol, smoking, diabetes, hypertension, antihypertensive drugs, psychotropic drugs, partner problems, performance anxiety, problems with self-esteem, and psychiatric disorders, especially depression.

The topic of erectile dysfunction has become increasingly important in psychopharmacology, not only because there are several psychotropic drugs that cause it but also because of the strikingly high incidence of impotence in several common psychiatric disorders. For example, some studies show that more than 90% of men with severe depression have moderate to severe erectile dysfunction (Fig. 14—10). Another reason for the importance of this topic in psychopharmacology is that effective and simple new psychopharmacological treatment based upon nitric oxide physiology and pharmacology is now available for men with erectile dysfunction.
FIGURE 14—9. The incidence of erectile dysfunction increased with age in this study of normal men between the ages of 40 and 70, from 39% at age 40 to 67% at age 70.

Psychopharmacology of Erectile Dysfunction

Normally, the desire to have sexual relations is a powerful message sent from the brain down the spinal cord and through peripheral nerves to smooth muscle cells in the penis, triggering them to produce sufficient nitric oxide to form all the cyclic GMP necessary to create an erection (Fig. 14—11). The cyclic GMP lasts long enough for sexual intercourse to occur, but then phosphodiesterase (type V in the penis) eventually breaks down the cGMP (Fig. 14—5), and the erection is lost (called detumescence).

However, if a man smokes, eats to the point of obesity, and has elevated blood glucose and elevated blood pressure, his peripheral nervous system "wires" do not respond adequately to the "let's have intercourse" signal from the brain—in other words, neurological innervation of the penis is rendered faulty, usually by diabetes (Fig. 14—12). Furthermore, there may not be much pressure in the "plumbing"—there may be atherosclerosis of the arterial supply of the penis from hypertension and hypercholesterolemia—when cGMP says "relax the smooth muscle and let the
blood flow into the penis.” In these cases, the desire for intercourse is there, but the signal cannot get through, so insufficient cGMP is formed, and therefore no erection occurs (Fig. 14—12). Similarly, even if a depressed patient experiences sexual desire, there is a general shutdown of neurotransmitter systems centrally and peripherally, resulting in inability to become aroused (Fig. 14—12).

Fortunately, there is a way to compensate for inadequate formation of cGMP. That compensation is a slowing of the rate of destruction of that cGMP that is formed, which is accomplished by inhibiting the enzyme that normally breaks down cGMP in the penis, namely phosphodiesterase type V, with an enzyme inhibitor called sildenafil (Viagra) (Fig. 14—13). Sildenafil will stop cGMP destruction for a few hours and allow the levels of cGMP to build up so that an erection can occur even though the wires and plumbing are still faulty (Fig. 14—13). Interestingly, sildenafil only works if the patient is mentally interested in the sex act and attempts to become aroused, so that at least weak signals are sent to the penis (i.e., it does not work during sleep).

Smooth muscle relaxation is thus the key element in attaining an erection. Administration of prostaglandins can also relax penile smooth muscle and elicit erections in a manner that mimics typical physiological mechanisms. Thus, intrapenile
FIGURE 14 — 11. Under **normal conditions**, when young healthy men are sexually aroused, nitric oxide causes cGMP to accumulate, and cGMP causes smooth muscle relaxation, resulting in a physiological [erection](#), indicated here by an inflated balloon. The erection is sustained long enough for sexual intercourse, and then phosphodiesterase V (PDE V) metabolizes cGMP, reversing the erection, indicated here by a pin ready to prick the balloon.

FIGURE 14 — 12. When a man has diabetes or hypertension, or if he smokes, uses alcohol, takes prescription drugs, or is depressed, there is a good chance that not enough of a signal of sexual desire will be able to get through his peripheral nerves and arteries to produce sufficient amounts of cGMP to cause an erection. This leads to **impotence**.

Injection of the prostaglandin alprostadil produces erections not only in men with organic causes of impotence but also in those with functional causes and even in the common situation of multifactorial causes. Limitations of this somewhat masochistic approach include unacceptability of self-injection, lack of spontaneity, and the possibility of "too much of a good thing," namely a prolonged and painful erection.
FIGURE 14-13. **Sildenaﬁl**, a phosphodiesterase V (PDE V) inhibitor, is able to compensate for faulty signals through the peripheral nerves and arteries that produce insuﬃcient amounts of cGMP to produce or sustain erections. Sildenaﬁl does this by allowing cGMP to build up, since PDE V can no longer destroy cGMP for a few hours. This is indicated by a patch on the balloon in the ﬁgure. The result is that normally inadequate nerves and arteries signaling cGMP formation are now suﬃcient to inﬂate the balloon, and therefore an erection can occur and sexual intercourse is now possible, until the sildenaﬁl wears off a few hours later.

FIGURE 14—14. Some **antidepressants** such as serotonin selective reuptake inhibitors (SSRIs) may inhibit nitric oxide synthetase (NOS) and thereby reduce NO and cause erectile dysfunction.

called priapism. Prostaglandin administration will cause an erection whether the man is mentally aroused or not.

Other drugs can affect sexual arousal, including some serotonin selective reuptake inhibitors (SSRIs), which may inhibit NOS directly and can thus cause erectile dysfunction (Fig. 14—14), and some dopaminergic agents, which boost NOS and might some day help erectile dysfunction (Fig. 14—15). Anticholinergic agents can interfere directly with arousal and cause erectile dysfunction. Thus, agents such as
FIGURE 14—15. Some agents that boost dopamine (perhaps like apomorphine) are promising experimental drugs for enhancing NOS and may be useful to reverse erectile dysfunction.

antipsychotics and tricyclic antidepressants and others with similar properties can cause erectile dysfunction (Fig. 14—16).

Psychopharmacology of Sexual Dysfunction

In summary, numerous agents used in psychopharmacology can facilitate or interfere with each of the three stages of the human sexual response (Fig. 14-16). Understanding the basic mechanisms of neurotransmission for each of these stages (Fig. 14—7), as well as the psychopharmacological mechanisms of action of the various psychotropic drugs that impact these neurotransmitter systems, will facilitate the management of psychotropic drugs in patients with sexual dysfunction.

Estrogen as a Neurotrophic Factor in the Brain

It is well known that ovarian estrogens, especially 17-beta-estradiol, regulate reproductive function and have profound effects on reproductive tissues in women, such as those of the breast and uterus. The long-term positive effects of estrogens outside of the reproductive tissues have also been emphasized, such as estrogen's effects in preserving bone mineralization and in reducing serum cholesterol. Recently there has been growing appreciation for the diversity of effects that estrogen can have on the brain as well, especially in regions of the brain outside of those areas known to be involved in the control of reproductive function and sexual differentiation. These neuronal effects are mediated by the same types of receptors for estrogen that exist in other tissues and have trophic actions on the brain, just as they have on other tissues. Trophic factors have been discussed in Chapter 1 (see Fig. 1 — 19 and Tables 1 — 3 and 1—4). In the brain, estrogen's trophic actions trigger the expression of genes that lead to the formation of synapses.

Estradiol modulates gene expression by binding to estrogen receptors (Fig. 14—17). Estrogen receptors differ from tissue to tissue and may differ from brain region to brain region. In addition to various forms of estrogen receptors, there are receptors for progesterone and androgens, as well as for other steroids such as glucocorticoids.
Psychopharmacological agents can affect all three stages of the human sexual response, both positively and negatively, as summarized here. In stage 1, libido can be enhanced by the norepinephrine and dopamine reuptake inhibitor (NDRI) bupropion, as well as by the dopamine-releasing stimulants amphetamine and methylphenidate. Libido can also be reduced by the dopamine receptor—blocking antipsychotics, some of which also increase prolactin. Stage 2, sexual arousal, can be enhanced by sildenafil, which boosts cGMP action, by prostaglandins, and perhaps by some dopaminergic agents. Sexual arousal can be reduced by some serotonin selective reuptake inhibitors (SSRIs), as well as by agents with anticholinergic properties. Finally, in stage 3, orgasm can be inhibited by SSRIs as well as by beta blockers, which block noradrenergic function.

and mineralocorticoids. Unlike neurotransmitter receptors located on neuronal membranes, receptors for estradiol are located in the neuronal nucleus, so estradiol must penetrate the neuronal membrane and the nuclear membrane to find its receptors, which are therefore located near the genes it wishes to influence. These genes are called estrogen response elements (Fig. 14—17).

The expression of these estrogen response elements within the DNA of the neuron progresses generally in the same manner as the expression of other neuronal genes, which has been discussed in Chapter 2 (see Figs. 2 — 31 to 2—42). The activation of estrogen response elements by estradiol requires "dimerization" (i.e., coupling of two copies of the estrogen receptor) when estrogen binds to the receptor to form an active transcription factor capable of "turning on" the estrogen response element (Fig. 14—18). Formation of transcription factors has also been discussed in Chapter 2 (see Figs. 2 — 33 and 2 — 35 to 2 — 38). Once the estrogen receptors are activated by estradiol into transcription factors, they activate gene expression by the estrogen
Estrogen modulates gene expression by binding to estrogen receptors. Estrogen receptors differ from tissue to tissue and may differ from brain region to brain region. Unlike neurotransmitter receptors located on neuronal membranes, receptors for estradiol are located in the neuronal cell nucleus, so estradiol must penetrate the neuronal membrane and the nuclear membrane to find its receptors, which are therefore located near the genes that are to be influenced. These genes are called estrogen response elements.

Gene products that are expressed include direct trophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which can facilitate synaptogenesis and prevent apoptosis and neurodegeneration.

Gene products also include neurotransmitter-synthesizing enzymes for the key monoamine neurotransmitter systems that regulate mood and memory (Figs. 14—20 to 14—22). Thus, the presence of estradiol can be critical to the adequate functioning of the monoamines serotonin (Fig. 14—20) and norepinephrine (Fig. 14—21) in women. Adult men do not respond to estrogen in this manner. The presence of estradiol in aging women but not in aging men can also be critical to the adequate functioning of acetylcholine in the nucleus basalis of Meynert (Fig. 14—22). The role of these key cholinergic neurons in the regulation of memory (see Fig. 12—11) and in the causation of Alzheimer's disease when they degenerate (see Fig. 12—13) have been discussed in Chapter 12. This may explain the emerging role of estrogen in managing memory and Alzheimer's disease in aging women, as discussed below.

Dramatic evidence of estrogen's trophic properties can be observed in hypothalamic and hippocampal neurons in adult female experimental animals within days.
FIGURE 14—18. The expression of estrogen response elements with the DNA of the neuron must be initiated by estrogen and its receptor. Activation of these genes by estradiol requires "dimerization" (i.e., coupling of two copies of the estrogen receptor) when estrogen binds to the receptor to form an active transcription factor capable of "turning on" the estrogen response element.

and across a single menstrual (estrus) cycle (Figs. 14 — 23 and 14 — 24). During the early phase of the cycle, estradiol levels rise, and this trophic influence induces dendritic spine formation, specifically in the ventromedial hypothalamus and on pyramidal neurons in the hippocampus of female rats. Progesterone administration rapidly potentiates this, so spine formation is at its greatest when both estrogen and progesterone peak, just after the first half of the cycle (Fig. 14—23). However, once estrogen levels fall significantly and progesterone levels continue to rise, the presence of progesterone without estrogen triggers down regulation of these spines and removal of the synapses by the end of the estrus cycle (Fig. 14—23). One hypothesis to explain the mechanism of this cyclical formation and removal of synapses is that estrogen may exert its trophic influence through low levels of glutamate activation (Fig. 14 — 24), leading to spine formation and synaptogenesis: this effect is followed by too much glutamate activation in the absence of estrogen, when progesterone alone leads to excitotoxicity and destruction of these same spines and synapses (Fig. 14 — 24). The hypothesis of how glutamate might mediate excitotoxic synaptic or neuronal toxicity was introduced in Chapter 4 (see Figs. 4—14 to 4—23) and discussed extensively in Chapter 10 (see Figs. 10 — 26 to 10-33).

Other evidence for the trophic influences of estrogen comes from what happens when the estrogen's effects are blocked with estrogen receptor antagonists. Tamox-
FIGURE 14—19. Once the estrogen receptors are activated by estradiol into transcription factors, they activate gene expression by the estrogen response elements in the neuron's DNA. Gene products that are expressed include direct trophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which can facilitate synaptogenesis and prevent apoptosis and neurodegeneration.

Ifen is an estrogen receptor antagonist used for the treatment of breast cancer, especially for breast tumors that themselves express estrogen receptors. Blocking estrogen receptors in breast cancer cells with tamoxifen triggers apoptosis (programmed cell death), presumably due to blocking the trophic effect of estrogen in these tumor cells. Interestingly, tamoxifen is an estrogen receptor antagonist in breast and uterus but is actually a partial agonist in preserving bone mineralization and reducing cholesterol. It is also an estrogen receptor antagonist in brain, since it can induce depression that can be difficult to treat with antidepressants. Thus, individual estrogens such as estradiol and tamoxifen all have tissue-selective estrogen agonist, partial agonist, and antagonist activities. This also extends to the new class of estrogens known as selective estrogen receptor modulators (SERMs), of which raloxifene is the newest available member. Such observations may also explain why some women respond differently to one estrogen preparation than to another, and from a behavioral perspective, why they may have different mood and cognitive responses to one estrogen preparation versus another. Unfortunately, very little work has been done to distinguish the pharmacologic effects of the different available estrogen preparations on estrogen receptor binding in the brain, and the only way...
Gene products activated by estradiol interacting with estrogen response elements in the serotoninergic neurons of the midbrain raphe include not only trophic factors, which nourish the growth and synapses of these neurons with nerve growth factor (NGF) and brain-derived neuro-trophic factor (BDNF), but also the enzymes and receptors that facilitate serotonergic neurotransmission. These receptors may also allow the neuron to have normal mood functions and to be more responsive to antidepressant medications in case of a depressive episode.

Estrogen and Mood Across the Female Life Cycle

Estrogen levels shift rather dramatically across the female life cycle, all in relationship to various types of reproductive events (Fig. 14—25). Thus, levels begin to rise and then cycle during puberty (see also Fig. 14—23). This cycling persists during the childbearing years, except during pregnancy, when a woman's estrogen levels...
FIGURE 14-21. **Gene products** activated by estradiol interacting with **estrogen response elements** in the noradrenergic neurons of the brainstem locus coeruleus include not only **trophic factors** that nourish the growth and synapses of these neurons with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but also the **enzymes and receptors** that facilitate **noradrenergic neuro-transmission**. These receptors may also allow the neuron to have normal mood function and to be more responsive to antidepressant medications in case of a depressive episode.

skyrocket (Fig. 14 — 25). Estrogen levels then plummet precipitously immediately postpartum, and regular menstrual cycles begin again once the mother stops nursing (Fig. 14-25).

Although the median age of menopause, which is the time of complete cessation of menstruation, is 51, women do not begin menopause overnight. The transition period from regular menstrual cycles to complete cessation of menstruation, called perimenopause, can begin 5 to 7 years before menopause and is characterized on on-again off-again cycles and anovulatory cycles, prior to complete cessation of menstrual cycles (Fig. 14—25). Hormone levels can be chaotic and unpredictable during these years. This can be experienced both as a physiological and a psychological stressor. Menopause is the final stage of transition of estrogen in the female life cycle and can be associated with estrogen replacement therapy, which can restore estrogen to its physiological levels during the childbearing years.

There are potential links between these shifts in estrogen levels across the female life cycle and the observation that depression is much more common in women than in men during certain stages of the life cycle. In men, the incidence of depression
FIGURE 14—22. Gene products activated by estradiol interacting with estrogen response elements in the cholinergic neurons of the nucleus basalis of Meynert in the basal forebrain include not only trophic factors that nourish the growth and synapses of these neurons with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), but also the enzymes and receptors that facilitate cholinergic neurotransmission. These receptors may also allow the neuron to function optimally in memory formation, particularly verbal memory in aging women, and to be more responsive to cholinesterase inhibitors in the case of Alzheimer's disease.

rises in puberty and then is essentially constant throughout life, despite a slowly declining testosterone level from age 25 onward (Fig. 14—26). By contrast, in women the incidence of depression mirrors their changes in estrogen across the life cycle (Fig. 14—27). As estrogen levels rise during puberty, the incidence of depression skyrocketed, falling again after menopause (Fig. 14—27). Thus, women have the same frequency of depression as men before puberty and after menopause. However, during their childbearing years when estrogen is high and cycling, the incidence of depression in women is two to three times as high as in men (Fig. 14 — 27).

Several other issues are of particular importance to women in terms of assessing their vulnerability to the onset and recurrence of mood disorders across their lifetimes. These are linked to shifts in reproductive hormone status, as outlined in Figure 14—28. First episodes of depression often begin in puberty or early adulthood, when estrogen is first rising; unfortunately these episodes are frequently unrecognized and untreated. Throughout the childbearing years of normal menstrual cycles,
FIGURE 14 — 23. Dramatic evidence of estrogen's trophic properties can be observed in hypothalamic and hippocampal neurons in adult female experimental animals within days and across a single menstrual (estrus) cycle. During the early phase of the cycle, estradiol levels rise, and this trophic influence induces dendritic spine formation and synaptogenesis. Progesterone administration rapidly potentiates this, so spine formation is at its greatest when both estrogen and progesterone peak just after the first half of the cycle. However, once estrogen levels fall significantly and progesterone continues to rise, the presence of progesterone without estrogen triggers down regulation of these spines and removal of the synapses by the end of the estrus cycle.
FIGURE 14—24. One hypothesis to explain the mechanism of cyclical formation and removal of synapses every menstrual (estrus) cycle in females is that estrogen may exert its trophic influence through low levels of glutamate activation, leading to spine formation and synaptogenesis. This, however, is followed by too much glutamate activation in the absence of estrogen, when progesterone alone leads to excitotoxicity and destruction of these same spines and synapses.

Most women experience some irritability during the late luteal phase just prior to menstrual flow; however, if this is actually incapacitating, it may be a form of premenstrual syndrome (PMS), worthy of treatment with antidepressants or estrogen, sometimes just during the late luteal phase. In other patients, this end-of-the-cycle worsening is unmasking a mood disorder that is actually present during the whole cycle but is sufficiently worse at the end of the cycle that it becomes obvious in a phenomenon called menstrual magnification. This may be a harbinger of further worsening or may also represent a state of incomplete recovery from a previous episode of depression. Nevertheless, both PMS and menstrual magnification are important, not only for the symptoms they cause in the short run but for the risk they represent for a full recurrence in the future, signaling the potential need for both symptomatic and preventive treatment.

Figure 14—28 also indicates the two riskiest periods in a woman’s life cycle for the onset of a first episode of depression or for the recurrence of a major depressive
FIGURE 14-25. **Estrogen levels shift dramatically across the female life cycle**, all in relation to various types of reproductive events. Levels begin to rise and then cycle in puberty. Cycling persists during the childbearing years except in pregnancy, when a woman’s estrogen levels skyrocket. Estrogen levels plummet precipitously immediately postpartum, and regular menstrual cycles begin again once nursing stops. Although the median age of menopause, when all menstruation stops, is 51, women do not stop menstruation overnight. The transition period from regular menstrual periods to complete cessation of menstruation is called perimenopause and can begin 5 to 7 years prior to menopause. The final transition phase is menopause, when estrogen replacement therapy (ERT) can restore estrogen levels to those of the childbearing years.

FIGURE 14 — 26. **In men**, the incidence of depression rises in puberty and then is essentially constant throughout life, despite a slowly declining testosterone level from age 25 on.
In women, the incidence of depression mirrors their changes in estrogen across the life cycle. As estrogen levels rise during puberty, the incidence of depression also rises, and it falls again during menopause, when estrogen levels fall. Thus, women have the same frequency of depression as men before puberty and after menopause. However, during their childbearing years when estrogen is high and cycling, the incidence of depression in women is two to three times as high as in men.

Both are associated with major shifts in estrogen. The first is the postpartum period, when skyrocketing levels of estrogen plummet immediately after delivery of the child. The second occurs during perimenopause, when chaotic hormonal status characterizes the transition from regular menstrual cycles to menopause with no menstrual cycles.

There is an increasing risk that a woman will have a recurrence of a major depressive episode after any shift in her estrogen status across her lifetime, a phenomenon some experts have called "kindling." For example, a woman's risk of having a postpartum depression increases severalfold if she had a depressive episode after a previous pregnancy. A woman who has a depressive episode triggered by any endocrine shift is quite vulnerable to a recurrence of depression after another reproductive "event" later in her life cycle, such as those shown in Figure 14—28, which include puberty, miscarriage, postpartum, perimenopause, taking oral contraceptives, and taking hormone replacement therapy, especially progestins. The increasing chances of a recurrent episode of depression in women whose episodes are linked to reproductive events and shifts in estrogen status may be related to the phenomenon of recurrence in other psychiatric disorders, such as bipolar disorder and schizophrenia. Thus, it is possible that certain mental illnesses, including recurrent depression, are potentially damaging to the brain owing to excitotoxic brain damage (see Chapters 4 and 10). Perhaps life cycle shifts in estrogen status trigger excitotoxicity, just as they seem to do every menstrual cycle (see Figs. 14—23 and 14—24), but huge life cycle shifts in estrogen may trigger depressive episodes in some women that not
FIGURE 14—28. Several issues of importance in assessing women’s vulnerability to the onset and recurrence of depression are illustrated here. These include first onset in puberty and young adulthood; premenstrual syndrome (PMS) and menstrual magnification as harbingers of future episodes or incomplete recovery states from prior episodes of depression; and two periods of especially high vulnerability for first episodes of depression or for recurrence if a woman has already experienced an episode, namely, the postpartum period and the perimenopausal period.

only cause suffering during the episode of depression itself, but also damage the brain, so that recovery is associated with an increased risk of subsequent episodes with diminishing the responsiveness to medication with each subsequent episode. This has also been hypothesized to explain the clinical course of schizophrenia as well, as discussed in Chapter 10 (Fig. 10—20). Whatever the cause of the high recurrence rate of depression in women across their life cycles and the associations with shifts in estrogen status, the importance of recognition and treatment of current episodes of depression in women, as well as use of medications to prevent future episodes, is extremely important since recurrence is so predictable, treatable, and potentially preventable.

Selecting treatments for the symptoms of mood disorders and their prevention must also take into account shifts in estrogen status and reproductive events across the life cycle of a woman. The potential impact of estrogen itself as a treatment, as well as antidepressants, must also be considered. Guidelines on how to use antidepressants and/or estrogen during these various phases of a woman’s life cycle are only now being developed, and the issues to be considered are outlined in Figure 14-29.

First, a high index of suspicion for first episodes of depression should accompany the assessment of adolescent girls (Fig. 14 — 29), since this illness is frequently missed, and despite the lack of formal approval of antidepressants for use in anyone under the age of 18, the newer antidepressants are frequently used for this purpose, and their safety has been well established in children and adolescents for related conditions such as obsessive-compulsive disorder (see Chapter 5). Also, the use of oral
FIGURE 14—29. This figure illustrates some of the issues involved in integrating endocrine shifts and events related to a woman's life cycle with treatment of a mood disorder with antidepressants and/or estrogen. These include use of antidepressants prior to age 18 if necessary; understanding how to select oral contraceptives to minimize depression; calculating risks versus benefits of antidepressant maintenance during pregnancy and during breast-feeding; and deciding whether to include estrogens as adjunctive treatments for women with mood disorders. There are also various options and flexible and creative regimens for administering hormones with antidepressants to perimenopausal and postmenopausal women with mood disorders to optimize their treatments.

contraceptives can affect adolescents as well as all females of childbearing potential and must be taken into consideration (Fig. 14—29), because these agents may sometimes cause depression or worsen preexisting depression. Triggering of depression by oral contraceptives can be especially problematic in those with a previous episode of depression and with contraceptives containing progestins only. Switching to oral contraceptives containing low-dose progestins combined with estrogens can sometimes prevent mood problems in these patients.

Another key treatment issue to be managed in a disorder with such a high risk of recurrence is whether to treat with maintenance antidepressants during pregnancy (Fig. 14—29). This decision involves calculating a risk/benefit ratio for the individual patient in terms of risk to the mother of recurrence of her depression during pregnancy due to stopping antidepressant treatment versus risk to the developing fetus due to the mother taking antidepressant treatment. Since the greatest risk to the fetus is at the beginning of pregnancy (i.e., during the first 12-week trimester, when the brain and other critical tissues are being formed) and the greatest risk to the mother is postpartum, the tradeoff is often to wait until later in pregnancy, until the mother begins to have a recurrent episode, or after delivery.

However, this brings up another problem. What about taking antidepressants during lactation and nursing (Fig. 14—29), in terms of risk of exposure of the baby to anti-
depressants in the mother's breast milk? Again, a risk/benefit ratio must be calculated for each situation, with account taken of the risk of recurrence to the mother if she does not take antidepressants (given her own personal and family history of mood disorder), and the risk to the bonding between baby and mother if she does not breast-feed or to the baby if exposed to trace amounts of antidepressants in breast milk. Although the risk to the infant of exposure to small amounts of antidepressants is only now being clarified, it is quite clear that the risks to the mother with a prior postpartum depression who neglects to take antidepressants after a subsequent pregnancy has a 67% risk of recurrence if she does not take antidepressants and only one-tenth of that risk of recurrence if she does take antidepressants postpartum.

Another issue is whether to use estrogens for the treatment of mood disorder symptoms (Fig. 14—29). Estrogens can improve mood and a sense of well-being in normal women during perimenopause, especially if they are experiencing vasomotor symptoms such as "hot flashes." However, it is quite controversial whether estrogen has any antidepressant role for women with major depressive disorder. Antidepressants are still first-line treatments for major depressive disorder across the female life cycle, but when they fail, novel approaches that integrate the use of estrogen are now being investigated, including the use of estrogen by itself or in combination with antidepressants, particularly during specific life cycle—related mood disorders (Fig. 14 — 29). For example, some patients with PMS seem to benefit from antidepressants and others from late luteal phase supplementation with low doses of estrogens, particularly if delivered transdermally via a skin patch. Some patients with profound collapse into a postpartum depression will respond rapidly to antidepressants, others to electroconvulsive therapy, and still others to reinstitution of estrogen with a "softer landing" to physiological postpartum levels. There are no objective means to determine who will benefit from which approach, but those who receive estrogen tend to be those who fail other better accepted first-line treatment approaches.

Particularly in women with perimenopausal depressions and especially when these are recurrent and resistant to antidepressants, treatment with estrogen replacement therapies can be effective. This was discussed in Chapter 7 as one of the combination strategies to add to antidepressants when various treatment strategies fail and illustrated conceptually in Figure 7 — 34. There are no accepted guidelines for when to try this approach, but these are hopefully evolving. Treating postmenopausal depression may also benefit from a boost from estrogen replacement, as indicated in Figures 14 — 20 and 14-21, as a result of the beneficial effects that estrogen may have on critical monoaminergic systems involved in mood, such as norepinephrine and serotonin. In the absence of estrogen, these systems may not function adequately, resulting both in a mood disorder and in failure to respond to antidepressants. Restoring estrogen to monoaminergic neurons allows their estrogen receptors to "reawaken" estrogen response elements in these neurons and may either extinguish problems with mood or allow the patient to become responsive to antidepressants.

Another issue for postmenopausal women has to do with the roles of both progesterone and estrogen in managing their mood disorder. Since progesterone can act as an estrogen antagonist in some tissues, such as those in the uterus and in some brain areas (see Fig. 14—24), it should not be surprising that progesterone can counteract the positive effects that estrogen has on mood in some women. In these cases, administration of progesterone as a component of hormone replacement ther-
FIGURE 14-30. Psychopharmacology is beginning to identify new therapies that are sex-specific and related to sexual functioning. These include treatments for the human sexual response, especially for erectile dysfunction in men, as well as a better appreciation of the role of hormones in managing mood and cognitive disorders in women.

Therapy may precipitate depression, or cause a magnification reminiscent of menstrual magnification during normal menstruation (when endogenous progesterone was presumably causing the same thing). For postmenopausal women, progesterone is necessary to prevent uterine cancer when estrogen replacement is being given. Thus, in a woman who has had a hysterectomy, progesterone treatment can be avoided. In a woman with her uterus, it may be less disruptive to her mood to give estrogen and progestin daily rather than to give the progestin just at the end of the cycle.

These various hormone strategies to consider in the management of mood and cognition in the treatment of women across their life cycles are summarized in Figure 14—30, along with some therapies for erectile dysfunction in men. Components of this emerging pharmacy for managing issues specific to each sex and issues of sexual function in psychopharmacology include sildenafil and prostaglandins for erectile dysfunction and numerous reproductive hormones, including oral and transdermal
skin patches for estrogens, progestins, and testosterone. Even the pattern of taking these hormones, such as daily, end of the menstrual cycle only, cyclically, counter-cyclically, etc. (i.e., rhythms and regimens) can make a big difference in a woman's response to them. It is also important to avoid some hormones (e.g., progestins) in some patients.

Cognition, Alzheimer's Disease, and the Role of Estrogen in Sex Differences

Although there are no sex differences in full-scale IQ scores on standardized tests of general intelligence, some cognitive differences exist between men and women. The best established of these are that on average, men excel in spatial and quantitative abilities, whereas women excel in verbal abilities and in perceptual speed and accuracy. However, the magnitude of these differences is modest. Whatever differences exist may be due to prenatal influences of reproductive hormones on brain organization during fetal brain development. Interestingly, after menopause, there is a loss of verbal memory skills in women, which is restored with estrogen replacement therapy. This suggests that estrogen is necessary to maintain optimal verbal memory functioning in women (Fig. 14 — 22), that loss of estrogen may lead to lack of expression of critical genes necessary to maintain this function in cholinergic memory pathways, and that this process can be reversed and restored with reinstitution of estrogen signals to turn gene expression back on. These effects of estrogen on memory in normal postmenopausal women, like those differences between cognitive functions of men and women, are on the whole modest in magnitude.

Alzheimer's disease is also more common in women than in men. Memory disturbances in Alzheimer's disease are linked to disruption in cholinergic neurotransmission (see Chapter 12, Fig. 12 — 13). About one and one-half to three times as many women have Alzheimer's disease as men. Although women live longer than men on average and so are at greater risk for Alzheimer's disease (because more of them are alive at ages when this illness is most common), this does not account for their increased rates of Alzheimer's disease or for their longer survival as compared with men after the onset of Alzheimer symptoms. After statistical adjustments for these facts, there appears to be a sex-specific risk for Alzheimer's disease, which preliminary studies suggest may be reduced in those women who take estrogen replacement therapy. It is hypothesized that loss of estrogen after menopause may be responsible for this sex-specific increased risk of Alzheimer's disease, perhaps particularly because of loss of the normal trophic actions that estrogen has upon cholinergic neurons that mediate memory (Fig. 14—22), but also due to the general loss of estrogen's trophic influence throughout the brain (Figs. 14—17, 14—18, and 14—19). Thus, estrogen replacement therapy hypothetically allows critical estrogen response elements in cholinergic neurons (Fig. 14—22) and throughout the brain to turn back on and protect against the onset of Alzheimer's disease. In Chapter 12, we discussed how several studies are in progress to determine whether estrogen can protect against the development of Alzheimer's disease in randomized controlled trials. It has also been observed that once Alzheimer's disease is diagnosed, estrogen may boost the effectiveness of cholinesterase inhibitors (cholinesterase inhibitors for Alzheimer's disease were discussed in Chapter 12).
Summary

In this chapter, issues in psychopharmacology related to sex and sexuality were discussed. This included an overview of the neurotransmitter mechanisms involved in the three psychopharmacological stages of the human sexual response, namely libido, arousal, and orgasm. Neurotransmitters that mediate each of these three stages were discussed, as well as drugs that facilitate and inhibit these stages. A specific introduction to the nitric oxide neurotransmitter system was outlined.

The clinical features and pathophysiology of and treatment approaches to erectile dysfunction in men was reviewed, including the new phosphodiesterase inhibitor sildenafil (Viagra). The role of estrogen across the female life cycle, including estrogen's profound behavioral and neurobiological properties, was also reviewed. The role of reproductive hormones, particularly estrogen, was outlined with a view to integrating it into psychopharmacology by taking account of a woman's stage in her life cycle (i.e., childhood, childbearing potential, pregnancy, and the postpartum, lactating/nursing, perimenopausal, and postmenopausal states) and whether she is taking estrogens when choosing a psychotropic drug for her in the treatment of either a mood disorder or a cognitive disorder.
SUGGESTED READING

Suggested Reading

Suggested Reading

Brainstorm Features 1997-2000

Suggested Reading

Abuse
of people, in schizophrenia, 373 of psychoactive
drugs. See Substance abuse Acetyl coenzyme A, in
acetylcholine synthesis, 467, 468f
Acetylcholine
deficiency of, memory disorders in, 469—471, 471f—473f
excess of, in conventional
antipsychotic therapy,
408-409, 410f, 411f in nicotine
exposure, 519, 519f, 520f,
523f-525f
receptors for, 468-469, 470f removal of, 467-468,
469f in sexual response, 541, 541f, 545f synthesis
of, 467, 468f Acetylcholinesterase, in acetylcholine
destruction,
467-468, 469f
Acetyl-L-carnitine, in Alzheimer's disease, 491
Acquired immunodeficiency syndrome, dementia
in, 479
Active transport, in
neurotransmission, 42f, 43f,
46-49, 51f-53f
Adatanserin, 262
Addiction, 500t, 501
Adenosine triphosphate, in selective serotonin
reuptake inhibitor action, 249f—250f
Adenylate
cyclase
in dual serotonin 2A antagonist-serotonin
reuptake inhibitor action, 262f—263f,
265f
enhancement of, antidepressants for, 264 in
selective serotonin reuptake inhibitor action,
249f-250f
Adhesion molecules, in neuronal migration, 27—28
Adolescents
depression in, 154

estrogen levels in, mood changes and, 556, 558,
561f, 562f, 563
Adrenergic modulators, norepinephrine-dopamine
reuptake inhibitors, 241-242, 241f, 242f in
drug combinations, 286, 286f-290f, 288,
292f-294f Adrenergic
receptor blocking
alpha 1, antipsychotic drugs in, 409, 409f, 411
obesity in, 534-536 Affective disorders, See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aggressive symptoms, 372f, 373, 448, 449f
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Mania
Affective flattening, in schizophrenia, 369
Aging
erosive dysfunction and, 545, 546f, 547f
Affective disorders,
See Bipolar
disorder; Depression;
Index

Agoraphobia
- clinical description of, 358—359
- panic disorder with, 347
treatment of, 355

Agranulocytosis, clozapine-induced, 432, 433

AIDS, dementia in, 479

Akathisia, selective serotonin reuptake inhibitor-induced, 233

Alcamprosate, in alcohol abstinence, 524—525, 532f

Alcohol
- pharmacology of, 522, 524-525, 531f, 532f
- receptor for, 313, 316f
- in social phobia, 360

Allosteric modulation, in neurotransmission, 89—97
- benzodiazepines and, 316—317, 318f, 319, 319f, 526, 533f
- vs. co-transmission, 96—97
- gamma-aminobutyric acid, 312, 315f
- glutamate receptors and, 387—388, 390f—391f, 515, 515f, 516f
- negative, 94—96
- positive, 92-94, 97f

Alogia, in schizophrenia, 369

Alpha 2 agonists
- in anxiety, 307, 309f
- in attention deficit disorder, 462, 466f, 466—467

Alpha 2 antagonists
- in dual serotonin-norepinephrine action, 251-253, 251f-257f
- Alpha receptors
- monoaminergic, 158-160, 160f-163f, 162, 165f, 176, 176f-178f
- in tricyclic antidepressant action, 222, 223f,
- 226f L-Alpha-acetylmethadol acetate, in opioid withdrawal, 522
- Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, 387, 390f
- Alprazolam
- drug interactions with, 210, 214f in insomnia/anxiety combination, 279 in panic disorder, 354—355
- Alprostadil, in erectile dysfunction, 549—550
- Alzheimer's disease
- aggressive symptoms in, 372f, 373 amloid cascade hypothesis of, 472—478, 475f, 478f
- apolipoprotein abnormalities in, 472
- cholinergic deficiency in, 469—471, 471f—473f
- cognitive dysfunction in, 370, 371f, 446-447, 447f
- definition of, 471-472, 474f in Down syndrome, 478 early, treatment of, 491-492
gender differences in, 558f, 567
- genetic factors in, 476-478, 477f, 478f
- glutamate excitotoxicity in, 393f
- hostility in, 448, 449f natural history of, 471, 473f, 485f
- neuritic plaques in, 472, 474f, 476f
- neurofibrillary tangles in, 472, 474f, 477f
- neuronal degeneration in, 117, 124, 126, 129f, 130, 392
- positive symptoms in, 368, 370f
- presymptomatic, treatment of, 491—492
- tau proteins in, 472, 474f treatment of amyloid precursor protein alterations in, 493—494, 495f
- antipsychotic drugs in, 444, 445f, 446-447, 447f
- apo-E alterations in, 493—494, 495f
- cerebral vasodilators in, 490
- cholinergic agents in, 489-493, 493f, 494f
- cholinesterase inhibitors in, 479-487, 480f-489f
- future, 457-458, 496-497 growth factors in, 496 hormones in, 490-491, 553 metabolic enhancers in, 497
- neuronal transplantation in, 490-491, 492 research on, 492-497, 493f-495f
- response to, 486-487, 487f-489f
- risperidone in, 434

Amenorrhea, antipsychotic drug-induced, 406, 407f

Amines
- as neurotransmitters, 19t, 20, 20t, See also Dopamine, Norepinephrine
- Amino acids
- as neurotransmitters, 19t, 20, 20t, See also Glutamate

Amitriptyline, in panic disorder, 354—355

Amisulpride, 425, 425

Amnestic, in panic disorder, 353—354

Amnesia, See Memory, disorders of Amotivational syndrome, marijuana-induced, 518

Amphetamines
- abuse of, 509, 510f-512f
- dopamine resembling, 504, 504f
- in drug combinations, 286, 286f, 288f, 291f-293f
- schizophrenia-like effects of, 374 in sexual response, 552f
- Amplification, in neurotransmission, 78

Amygdala
- neurokinins in, 191f
- amyloid cascade hypothesis of, 472-478, 475f-478f
- Amyloid precursor protein, abnormal, in Alzheimer's disease, 473-475, 475f, 476f, 478, 493-494, 495f

Amyotrophic lateral sclerosis, neuronal degeneration in, 124, 126, 129f, 130 Anandamide, 504, 504f, 516-517, 517f Anatomically addressed nervous system concept, 3-5, 7f
Androgen receptors, in brain, 441 Anesthetic, cocaine as, 505, 506f
Antianxiety drugs, See Anxiolytics Anticholinergic drugs with antipsychotic drugs, 408-409, 410f, 411f side effects of, 409 Anticonvulsants in bipolar disorder, 281f, 282 as mood stabilizers, 267-271, 268t, 269f-270f, 272f Antidepressants, See also individual drugs action of, 200-205 acute, 200, 201f in combinations, 283-285, 285f-294f monoamine hypothesis of, 179-180, 185, 203-204, 205f monoamine oxidase inhibitors, 156f, 157, 179-180, 185 neurotransmitter receptor hypothesis of, 200—203, 201f-204f time course of, 201f tricyclic, 156f, 157 for adolescents, 154 antidepressants with, 445—446 in anxiety, 299-305, 304f augmenting agents for, 271—274, 273f—278f, 278-279, 280f, 284f bad news about, 150-153, 150t-152t beta agonists, 263—265 in bipolar disorder, 143, 153, 262, 281f, 282 for children, 153 — 154 classical, See Monoamine oxidase inhibitors; Tricyclic antidepressants combinations of, See Polypharmacy demethylation of, 208f depression subtype and, 144-147, 147f, 148f dietary interactions with, 214—215, 217, 219f—221f disease refractory to, 152, 152t, See also Polypharmacy diagnosis of, 283 dopamine reuptake inhibitors, 241—242, 24lf, 242f, 290f-294f cocaine as, 505-506, 506f, 507f drug interactions with, See Drug interactions dual serotonin-dopamine reuptake inhibitors, 262, 265 dual serotonin-norepinephrine reuptake inhibitors, 246-250, 246f-250f in dysthymia, 144, 145, 146f, 147f erectile dysfunction due to, 550—551, 550f, 551f estrogen as, 565 — 567, 564f, 566f estrogen status considerations in, 563 — 567, 564f, 566f good news about, 147-148, 148f—150f, 149f, 150 herbal, 266 ideal characteristics for, 262—263 in insomnia, 329f, 332 long-term outcomes of, 142-144, 142f-147f, 144f in maintenance therapy, 150, 150t metabolism of, 209-210, 211f, 213f monoamine oxidase inhibitors, See Monoamine oxidase inhibitors monoaminergic modulators, 263—265 mood stabilizers, 266-271, 267f, 269f-270f, 272f, See also Lithium neurokinin antagonists, 266 norepinephrine reuptake inhibitors, 241—242, 24lf, 242f in drug combinations, 286, 286f-290f, 288, 292f, 293f in panic disorder, 353—354 pharmacokinetics of, 205—212 CYP450 1A2 and, 207f-210f, 208-209, 217t CYP450 3A4 and, 207f, 210-211, 214f-215f, 217t CYP450 2C9 and, 207f, 217t CYP450 2D6 and, 207f, 209-210, 211f-213f, 217t CYP450 inducers, 211-212, 216f, 217t monoamine oxidase inhibitors, 217vs. pharmacodynamics, 205 — 206, 206"pooping out" phenomenon and, 150—151 in posttraumatic stress disorder, 363 in pregnancy, 564 psychotherapy with, 294—295 response to, 142, 143f, 144-145, 147-148, 147f-149f, 148t, 149t, 151-152 results of recovery, 142, 142f, 143f recurrence, 142, 144f, 144t, 150, 150t relapse, 142, 144f, 148, 149f remission, 142, 142f, 143f, 147-148, 148t, 151-152 second messenger enhancing, 264
Antidepressants (Continued)
selective noradrenergic reuptake inhibitors, 234—241, 237f-238f, 239f, 286, 286f-287f, 288 selective serotonin reuptake inhibitors, See
Selective serotonin reuptake inhibitors;
specific drugs
Behavior disorders of, in schizophrenia, 368, 369, 448
genetic changes and, 21, 23 Behavioral therapy, 294-295
for obsessive-compulsive disorder, 342f, 345 for panic disorder, 355, 356f for social phobia, 361—362
Belligence, in psychosis, 367
Benzodiazepines
abus of, 526-527, 533f-535f antidepressant interactions with, 210—211, 214f, 275f
270f, 272f antipsychotic drugs in, 271, 281f, 282, 444—
446, 445f, 446f combination drugs in, 280, 281f, 282 electroconvulsive therapy in, 293—294 future, 457-458 in hostility, 448, 449f lithium in, 266-267, 267f longitudinal, 1. 53 olanzapine in, 435 quetiapine in, 435 response to, 143 risperidone in, 434 serotonin-dopamine antagonists in, 262 thyroxine hormone in, 272 ziprasidone in, 436 Bladder function, regulation of, norepinephrine in, 162, 167f, 240 Blame, self, in psychosis, 368 Blood pressure, regulation of, norepinephrine in, 166f, 240 Blushing, in social phobia, 359 BMS181,101 (dual serotonin 2 antagonist/serotonin reuptake inhibitor), 262 BMY-14,802 (sigma antagonist), in schizophrenia, 456 Borderline personality disorder aggressive symptoms in, 372f, 373 hostility in, 448, 449f Brain development of, 355, 356, 357f-359f expression of, estrogen in, 553, 555f, 557f, 558f Brainstem norepinephrine action in, 162, 166f, 240 serotonin action in, 178, 183f, 184f, 233 Brasofensine, in depression, 242 Brofaramine, in depression, 218 Bulimia, selective serotonin reuptake inhibitors in, 231-232, 233t Bupropion, 522, 530f Bupropion in attention deficit disorder, 462, 466—467 CYP450 enzyme interactions with, 217f in depression, 241-242, 241f, 242f in drug combinations, 286, 287f, 290f, 292f-294f in sexual response, 552f in smoking cessation, 521, 528f Buspirone in antidepressant augmentation, 273—274, 275f—
278f, 278 in anxiety, 306, 307f in obsessive-compulsive disorder, 342f in social phobia, 361
Butyrylcholinesterase
 in acetylcholine destruction, 467-468, 469f
 inhibitors of, in Alzheimer's disease, 481—482, 481f, 482f, 485
Caffeine, panic attack due to, 349
Calcium, excess of, neuron destruction in, 123f
 Calcium channels, 50f
 anticonvulsant action on, 267—268, 269f
 glutamate receptor linkage to, 387 — 388, 390f—
 392f, 392, 515, 515f, 516f regulation of, glutamate in, 122, 123f— 129f, 126
 voltage-gated, in neurotransmission, 6
Cannabinoids, 515-518, 517f, 518f
 antagonists of, in schizophrenia, 456
 endogenous, 516-517, 517f
Carbamazepine
 in bipolar disorder, 281f, 282
 as CYP450 inducer, 211-212, 216f, 439-440, 443f
 as mood stabilizer, 269, 269f
Carbon dioxide
 hypersensitivity, in panic disorder, 350
 CART (cocaine- and amphetamine-regulated
 transcript) peptides, 509, 512f
Caspase inhibitors, in degenerative diseases, 392, 397f, 398f
Catastrophic thinking, in panic attack, 346
Catechol-O-methyl transferase in dopamine destruction, 168f in norepinephrine destruction, 157, 159f
 Cell body, of neuron, 2, 2f, 3f
Cerebellum, norepinephrine action in, 162, 166f, 240
 Cheese reactions, with monoamine oxidase
 inhibitors, 214-215, 217, 219f-221f
Chemical neurotransmission, See Neurotransmission; Neurotransmitter(s); specific transmitters
 Chemically addressed nervous system concept, 5—6, 7f
Children
 aggressive symptoms in, 372f, 373
 attention deficit disorder in, See Attention deficit disorder
 bipolar disorder in, 154 dementia in, 434
 depression in, 153—154, 558 development of, disease vulnerability and, 108— 110, 110f
 mood disorders in, 445
 psychosis in
 positive symptoms in, 369, 370f
treatment of, 444, 445f
Chlorpromazine
 efficacy of, 430f
 mechanism of action of, 402
Cholecystokinin
 agonists of, in schizophrenia, 456
 antagonists of in anxiety, 324 in schizophrenia, 456
 panic attacks due to, 350
 receptor for, 350
Choline
 in acetylcholine synthesis, 467, 468f
 in Alzheimer's disease, 489
 acetyltransferase, in acetylcholine synthesis, 467, 468f
 Cholinergic agonists, in Alzheimer's disease, 492—
 493, 493f, 494f
Cholinergic deficiency syndrome, memory disorders
 in, 469-471, 471f-473f
Cholinergic receptors, drugs targeting, in Alzheimer's disease, 492-493, 493f, 494f
Cholinesterase inhibitors of, in Alzheimer's disease, 479-487, 480f-489f
 nonspecific (butyrylcholinesterase), in acetylcholine destruction, 467-468, 469f
 CI-1007 (antipsychotic), 455-456
 Cinnamazine, in Alzheimer's disease, 490
 Cisapride, drug interactions with, 210, 214f, 215f
 Citalopram action of, 222, 223f
 CYP450 enzyme interactions with, 217f
 in drug combinations, 291f
 in panic disorder, 352
 in social phobia, 360
 Citrulline, nitric oxide synthesis from, 542, 543f
Clomipramine
 metabolism of, 208, 208f
 in obsessive-compulsive disorder, 339, 341, 343
Clozapine
 in insomnia/anxiety combination, 279
 as mood stabilizer, 27 1
 in obsessive-compulsive disorder, 345
 in panic disorder, 354—355
 in social phobia, 361
Clonidine
 in anxiety, 307, 309f
 in attention deficit disorder, 462, 466f
 in opioid withdrawal, 522
 in social phobia, 361
 Clozapine, 431-433, 431 f, 432f
 efficacy of, 430f
 metabolism of, 437-438, 439f-443f
 in polypharmacy, 45 1
 vs. quetiapine, 435
 vs. zotepine, 452-453
Cocaine
 anesthetic properties of, 505, 506f
 dopamine resembling, 504, 504f
Cocaine (Continued)

as dopamine reuptake inhibitor, 505—506, 506f, 507f
intoxication with, 505—506 long-term effects of, 507, 509 vs. nicotine, 517-518, 523f
"reverse," 509
reverse tolerance to, 505—506, 508f
schizophrenic-like effects of, 374 undesirable effects of, 505—506 withdrawal from, 509
Cocaine- and amphetamine-regulated transcript peptides, 509, 512f

Codeine, 521, 530f
Coding region, of gene, 21, 22f

cognition, gender differences in, 567
Cognitive dysfunction in schizophrenia, 370, 371f
mesocortical dopamine pathway in, 374—377, 375f, 377f, 378f, 404, 405f treatment of, 446—447, 447f selective norepinephrine reuptake inhibitors in, 238, 239
treatment of, See also Cognitive enhancers estrogen in, 567 in schizophrenia, 446-447, 447f

Cognitive enhancers in attention deficit disorder, 460—467 alpha 2 agonists, 462, 466f antipsychotic drugs, 466—467 diagnostic criteria and, 460—461, 461f hyperactivity and, 462—466, 466f mood stabilizers, 466—467
neuropsychopharmacology of, 460, 461f new, 466-467 stimulants, 461-462, 462f-465f
in memory disorders, 467—470
cholinergic neurotransmission and, 471—479, 474f-478f
cholinesterase inhibitors, 479-488, 480f-489f
neuropsychopharmacology and, 467-471, 468f—473f research on, 492-497, 493f-495f unproven, 489-492 in psychosis, 446-447, 447f Cognitive therapy, 294-295 for panic disorder, 355, 356f for social phobia, 361—362 Combined neurodevelopment/neurodegenerative hypothesis of schizophrenia, 397, 399f

Complex genetics approach, to disease, 103, 108f
Compulsions, 337, 337t, 338t
regulation of, serotonin in, 178, 182f
Conceptual disorganization, in psychosis, 367
Conduct disorder, aggressive symptoms in, 372f, 373, 448, 449f
Constipation, drug-induced antipsychotics, 41f
selective norepinephrine reuptake inhibitors, 240 tricyclic antidepressants, 225f
Contraceptives, oral, depression due to, 564

Corticotropic-releasing factor, antagonists to, in anxiety, 324 Co-transmission, of neurotransmitters, 20, 20f
vs. allosteric modulation, 96—97 CP-448,187 (serotonin 1D antagonist), 265
Credingfeld-Jakob disease, dementia in, 478—479 Cross-dependence, drug, 500t, 501 Cross-titration, of antipsychotic drugs, 449, 450f Cross-tolerance, drug, 500t, 501
Cultural factors, in substance abuse, 500-501
Cyclic adenosine monophosphate in dual serotonin 2A antagonist/serotonin reuptake inhibitor action, 262f—263f, 265f as second messenger, 14, 56, 59f, 61, 64f in selective serotonin reuptake inhibitor action, 249f-250f
Cyclic guanosine monophosphate in erection, 547—548, 549f, 550f in nitric oxide synthesis, 542, 543f
CYP450 enzymes, See Cytochrome P450 enzymes;
specific enzymes

Cytochrome P450 enzymes in antidepressant metabolism, 205—212, 206f, 207f
CYP450 1A2, 207f-210f, 208-209, 217f
CYP450 3A4, 207f, 210-211, 214f-215f, 217f
CYP450 2C9, 207f, 217f CYP450 2D6, 207f, 209-210, 211f-213f, 217f
inducers of, 211-212, 216f, 217f polymorphism of, 207f, 208 in antipsychotic metabolism CYP450 1A2, 437-438, 439f, 440f CYP450 3A4, 439-440, 442f, 443f CYP450 2D6, 438-439, 441f, 442f inhibitors of, drug interactions with, 437—440, 439f-443f

Degenerative disorders, See also Alzheimer's disease pathogenesis of, 114, 116f, 117-120, 118f—121f calcium excess in, 123f, 124, 126, 127f, 129f schizophrenia, 385-392, 386f excitotoxicity in, 386—387 glutaminergic neurotransmission defects in, 387-392, 388f-396f treatments based on, 392, 397f, 398f
Dehydroepiandrosterone, in antidepressant augmentation, 279
Delirium, in hallucinogen intoxication, 511
Delta-9-tetrahydrocannabinol, 515 — 518, 517f
Delusions in phencyclidine intoxication, 514 in psychosis, 367 in schizophrenia, 368, 375, 376f
Dementia, See also Alzheimer's disease aggressive symptoms in, 372f, 373
Dementia (Continued)
cognitive dysfunction in, 370, 371f, 446—447, 447f
cognitive dysfunction in, 370, 371f, 446—447, 447f
memory disorders in, 478—479
neuronal degeneration in, 117
pathogenesis of, 114—115, 116f
positive symptoms in, 369, 370f
treatment of, 446—447, 447f
quetiapine in, 435
risperidone in, 434
ziprasidone in, 436

demethylation, of antidepressants, 208, 208f
dendrites, 2, 2f, 3f, 30, 30f-32f
destruction of, 127f
spines on, 3f
formation of, during menstrual cycle, 553—554, 559f, 560f
dependence, drug, 500t, 501-502
benzodiazepines, 526—527, 534f
detoxification after, 502
nicotine, 519, 525f
opioids, 521
dephosphatases, in neurotransmission, 42f
deprenyl, in Alzheimer's disease, 492
depression
in adolescents, treatment of, 154
anxiety with, treatment of, 298-305, 300f, 304f
in benzodiazepine withdrawal, 527
biologic basis of, monoamine hypothesis in, See Monoamine hypothesis of depression in bipolar disorder, See Bipolar disorder in children
clinical features of, 136—139, 137t—14lt
diagnostic criteria for, 137, 138t, 139t
double, 144, 147f
epidemiology of, 137-139, 140t, 141t
erectile dysfunction in, 546, 548f vs. estrogen levels during female life cycle, 557 — 558, 560, 561f-564f, 566f
first episode of, in adolescent girls, 563 — 564
gender difference in, 557-558, 561f, 562f
longitudinal course of, 153—154
mania with, 136
misconceptions about, 136—137, 137f
natural history of, 137-139, 140t, 141t, 142, 147f
neurokinin hypothesis of, 188-196, 190f-197f
neurotransmitter receptor hypothesis of, 185 — 186, 185f, 186f, 188f, 189f
normal, vs. illness, 136
partial remission in, 151, 151t
patient education on, 140t postpartum, 561f, 562, 562f, 563f
predisposition to, 111f
pseudodementia in, 479 as pseudomonooamine deficiency, 187 — 188, 188f
psychotic
positive symptoms in, 368, 370f
treatment of, 445
recovery from, 142, 142f, 143f
five Rs of, 142-144, 142f-147f
four good news about, 147-148, 148t-150t, 149f
long-term outcomes of, 142-144, 142f-147f
maintenance. 150, 150f "pooping out" in, 150—151
refractory, 152, 152t
risk factors for, 140t
in schizophrenia, 372f, 373—374
somatization in, 136—137
suicide in, 139, 141t
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
See also Antidepressants in adolescents, 154
anxiety with, treatment of, 298-305, 300f, 304f
as syndrome, 137, 139t
treatment of,
Donepezil, in Alzheimer's disease, 479-480, 480f, 481f, 484f, 485f.
L-DOPA, in Parkinson's disease, 130, 132f.
Dopamine, See also Dopamine pathways antidepressant effects on, 179—180, 185 in attention regulation, 460, 461f.
L-DOPA, in Parkinson's disease, 130, 132f.
Dopamine, See also Dopamine pathways antidepressant effects on, 179—180, 185 in attention regulation, 460, 461f.
destruction of, 163, 167f—169f.
in obsessive-compulsive disorder, 339—340 in psychosis, 126.
in smoking, 518-519, 520f, 523f.
in sexuality, 540—541, 540f, 545f.
receptors for, 163, 169f—170f.
blockade of, antipsychotics in, 402—407, 403f, 404t, 405f—407f.
substance abuse and, 504—505, 504f.
reuptake of, bupropion effects on, 287f—288f.
tricyclic antidepressant action on, 219, 223f.
synthesis of, 157, 158f.
transport of, 163, 167f—168f.
Dopamine beta-hydroxylase, in norepinephrine synthesis, 157, 158f.
Dopamine pathways, See also specific pathways of schizophrenia, 374—380, 375f.
mesocortical, 374-377, 375f, 377f, 378f, 404, 405f.
mesolimbic, 374, 375f, 376f, 402, 403f, 404.
tuberoinfundibular, 375f, 378, 379f, 380.
Dorsolateral prefrontal cortex, degeneration of, in schizophrenia, 375, 378f.
Double anxiety syndrome, 302f.
Down syndrome, Alzheimer's disease in, 478 Down-regulation, of receptors, 65, 66f, 68f.
Doxepin, in panic disorder, 353—354.
Ergot alkaloids, in Alzheimer's disease, 490.
Erythromycin, as CYP450 enzyme inhibitor, 215, 439, 443f.
Estrogen, in Alzheimer's disease, 492, 553, 558f, 567 in antidepressant augmentation, 275f, 279, 280f as brain neurotrophic factor, 553-556, 553f—560f.
Estrogen (Continued)
mood changes and, 556—558, 560, 561f—564f,
562—567, 566f in child-bearing years, 556,
558, 560, 561f,
562—564, 562f depression, 557—558, 560,
561f—564f, 562—567, 566f
in lactation, 564—565 in menopause, 557,
558, 561f—563f, 562, 565—566
overview of, 556—557, 561f postpartum,
557, 561f, 562, 562f in pregnancy, 556—
557, 561f, 562f, 564 premenstrual syndrome and, 560 in puberty, 556, 558,
561f, 562f, 563 receptors for, in brain, 551—
553, 553f—558f replacement of, 557, 561f
Alzheimer's disease incidence and, 567 in
depression, 565—567, 564f, 566f verbal memory
improvement in, 567 Estrogen receptor antagonists,
psychologic response to, 554—556 Estrogen response elements, in
brain, 552—553, 553f—558f
Ethchlorvynol, in insomnia, 332—333 Ethinamate, in
insomnia, 332—333 Euphoria, in drug use
amphetamines, 509 benzodiazepines, 526, 527
cocaine, 505 opioids, 521 sedative-hypnotics, 528
Excitation-secretion coupling, 6 Excitement, in
psychosis, 367 Excitotoxicity, 122, 123f—129f, 124,
126, 128, 130 antagonists to, 130 cellular events during,
394f—396f in dendrite pruning, 32f, 122,
127f, 128f estrogen in, 562—563 glutamate system and, 389, 392, 392f—396f
progesterone in, 554, 560f in schizophrenia, 386—
387, 389, 392f—396f Executive function, impaired, in
schizophrenia, 370 Exposure therapy, for social
phobia, 361—362 Extracellular portion of, receptors,
36—37, 36f—38f Extrapyramidal symptoms antipsychotic drug-induced, 404, 405f, 408—
409, 410f, 411f typical, 440 serotonin-
dopamine interactions and, 416—
418, 421f—424f in schizophrenia, 369, 371f, 375f, 377—378, 379f
Fananserin, 456 Fatigue, selective norepinephrine reuptake
inhibitors in, 238—240 Fear, See Phobic disorders Fetus
injury of, schizophrenia in, 380—385, 381f—385f
neurodevelopment in, 24, 25f, 27
synapse development in, 111 — 112, 112f, 113f
Fight or flight reaction, 298 First messengers, in neurotransmission, 13f, 14, 49,
54f, 69
Flashbacks, in hallucinogen abuse, 514 Flesinoxan, in depression, 265
Flibanserin, in depression, 262 Flumazenil
as benzodiazepine antagonist, 321, 322f, 323f
panic attack induced by, 350 Fluoxetine in
appetite suppression, 534 CYP450 enzyme interactions with, 217f, 442f,
443f in depression action of, 51f, 53f, 222, 235f CYP450 enzyme
interactions with, 217f in drug combinations, 293f
drug interactions with, 210—211, 215f in panic
disorder, 352 in social phobia, 360 Fluoxetine,
in depression, 254 Flurazepam, in insomnia, 330
Fluvoxamine CYP450 enzyme interactions with, 217f, 438,
439, 439f, 443f in depression, action of, 222, 237f drug
interactions with, 208—210, 209f, 210f, 215f
in panic disorder, 352 in social phobia, 360 Fos gene and protein, 41, 45f, 60f, 61—62,
61f—64f Free radicals in excitotoxicity, 122, 130, 392, 395f, 396f
scavengers of, 130 in degenerative diseases, 392, 397f, 398f
Frontal cortex norepinephrine action in, 162, 165f, 239
serotonin action in, 178, 182f, 231 Frontotemporal dementia, 479 Full
agonists, 82—83, 84f, 86, 88, 92f, 93f
benzodiazepines as, 319—320, 321f, 322f
G proteins in dual serotonin 2A antagonist/serotonin
reuptake inhibitor action, 262—263f, 265f
enhancement of, antidepressants for, 264 in
lithium action, 266, 267f in neurotransmission, 49, 53, 54f, 55f, 56
superfamily of, 78—79, 80f in selective
serotonin reuptake inhibitor action, 249f—250f
GABA, See Gamma-aminobutyric acid Gabapentin
in bipolar disorder, 281f, 282 in depression, 270,
270f Galactorrhea, antipsychotic drug-induced, 406,
407f Galanin receptor dysfunction, obesity in, 536—537
Galanthamine, in Alzheimer's disease, 483, 483f,
484f
Gamma-aminobutyric acid action of, 6, 8f benzodiazepines and, 311—323, 312f—316f, 317t, 318f—323f destruction of, 312, 313f imbalance of, in panic disorder, 349—350, 351f neurons producing, 311—312, 312f—313f receptors for, 312—313, 314f—316f agonists and antagonist effects on, 319—322, 320f—323f alcohol action at, 522, 524, 531f, 532f benzodiazepine receptor allosteric modulation of, 316—317, 318f, 319, 319f, 526, 533f—535f regulation of, anticonvulsants in, 268—271, 269f—270f, 272f reuptake of, 312, 313f synthesis of, 312, 312f transporter for, 312, 313f Gamma-aminobutyric acid transaminase, 312, 313f Gangliosides, in Alzheimer's disease, 496 Gastrointestinal system, serotonin action in, 178, 184f, 233 Gene(s)
Heteroreceptors
noradrenergic, alpha 1, norepinephrine action on, 251-252, 253f-254f, 257f
postsynaptic, alpha 2, 251-253, 251f-255f, 257f
Hippocampus dysfunction of
in depression, 187, 189f in panic disorder, 352 in posttraumatic stress disorder, 362 estrogen trophic effects on, 553—554, 559f—560f Histamine receptors
alpha 2 antagonist effects on, 252, 255f—257f blocking of, obesity in, 529-530 dual serotonin 2 antagonists/serotonin reuptake inhibitors effects on, 258f, 261 tricyclic antidepressant effects on, 222, 223f, 225f-229f, 233f, 237f, 239f, 514f, 515f
Histamines, See also Estrogen; Testosterone in Alzheimer’s disease, 490—491 in antidepressant augmentation, 275f, 279, 280f as neurotransmitters, 19t Hostility
in psychosis, 367 in schizophrenia, 372f, 373f
5HT, See Serotonin
Human immunodeficiency virus infection, dementia in, 479
Huntington’s disease dementia in, 479 neuronal degeneration in, 130 Hydergine, in Alzheimer’s disease, 490 Hydrocephalus, normal pressure, dementia in, 478 Hydrocodone, 530f
5-Hydroxyindole acetic acid, excess of, in destructive behavior, 180
5-Hydroxytryptamine, See Serotonin
5-Hydroxytryptophan, in serotonin synthesis, 164, 170f
Hyperactivity, in attention deficit disorder, 462
Hypericin, in depression, 266
Hyperprolactinemia
antipsychotic drug-induced, 406, 407f, 422, 427f-429f in tuberoinfundibular dopamine pathway defects, 375f, 378, 379f, 380f
Hypersensitivity, to respiratory products, in panic disorder, 350
Hypertension, monoamine oxidase inhibitor-induced, 214-215, 217, 220f
Hyperventilation, panic attacks in, 350
Hypomania, 136, 145f lithium in, 266—267
Hypotension
antipsychotic-induced, 412f tricyclic antidepressant-induced, 226f
Hypothalamus dopamine projections from, See Tuberoinfundibular dopamine pathway
estrogen trophic effects on, 553—554, 559f, 560f
Hormones, See also Estrogen; Testosterone in Alzheimer’s disease, 490—491 in antidepressant augmentation, 275f, 279, 280f as neurotransmitters, 19t Hostility
in psychosis, 367 in schizophrenia, 372f, 373f
5HT, See Serotonin
Hyperactivity, in attention deficit disorder, 462—466, 466f
Idazoxan, in depression, 264
Iloperidone, 455
Imipramine, in depression, 208, 208f
Impending doom, sense of, in panic attack, 346
Impotence (erectile dysfunction), 545—551, 546f—552f
Inattentiveness, See Attention deficit disorder
Information processing, impaired, in schizophrenia, 370
Insomnia, 324—333
anxiety with, treatment of, 279 in benzodiazepine withdrawal, 527 classification of, 325—326, 325f clinical description of, 324—326, 325f
differential diagnosis of, 325
long-term, 326
primary, 325
rebound, 331-332
secondary, 325
selective serotonin reuptake inhibitor-induced, 233
short-term, 325
transient, 325 treatment of, 326—333
antidepressants in, 329f in benzodiazepines in, 329-332, 329f, 330f, 331f
chloral hydrate in, 332—333
duration of, 326
nonbenzodiazepine short-acting hypnotics in, 326-329, 327f, 328f, 329f, 329f older agents in, 322—333
over-the-counter agents in, 325
primary condition treatment in, 325
Intoxication
alcohol, 522, 524-525, 531f, 532f
cocaine, 505-506
definition of, 501
hallucinogen, 505-506
definition of, 501
hallucinogen, 510-511, 514 opioid, 521-522
phencyclidine, 514—515
Intracellular portion, of receptors, 36, 36f—38f, 39
Inverse agonists, 83f, 84f, 85f benzodiazepine receptor interactions with, 319—320, 320f, 321f
Ion channels, e.g., Calcium channels
agonist action on, 82—83, 84f, 92f inverse, 83f, 84, 87f, 88f partial, 85-86, 89f-92f allosteric modulation and, 89—97f
antagonist action on, 83, 85f, 86f, 88f, 90f
anticonvulsant action on, 267—270, 269f—270f, 272f glutamate receptor linkage to, 387—388, 390f
392f, 392, 515, 515f, 516f ligand-gated, 44, 50f, 79-81, 81f, 82f
allosteric modulation and, 92, 97f receptor complexes with, 40f, 79—81, 81f, 82f regulation of, 56, 57f, 58f structures of, 80—81 types of, 41f, 44 voltage-gated, 44, 50f
Iron, of guanyl cyclase, nitric oxide binding to, 542, 543f
Irritability, in psychosis, 367
Jun gene and protein, 41, 45f, 61—62, 60f—63f
Kainate receptor, 387, 390f
Ketamine, abuse of, 514
Ketoconazole, CYP450 enzyme interactions with, 215f, 439, 443f
Kindling
of depression, estrogen status and, 562
of mania episodes, 267
Lactate hypersensitivity, in panic disorder, 350
Lactation, antidepressants during, 564—565
Lamotrigine
in bipolar disorder, 281f, 282
as mood stabilizer, 269—270, 270f
Lazaroids
in degenerative diseases, 394
in excitotoxicity, 130
Learning, impaired, in schizophrenia, 370
Lecithin, in Alzheimer's disease, 489
Leptin receptors, dysfunction of, obesity in, 536—537
Leucine zippers, function of, 41, 47f, 61—62, 60f-64f
Lewy body dementia, 479
Libido
drugs affecting, 552f
neurotransmission in, 540—541, 540f, 545
Life events, psychiatric disorders and, 107 — 109, 108f-111f
Limbic system
dopamine projections to, See Mesolimbic dopamine pathway
norepinephrine action in, 162, 165f, 240
serotonin action in, 178, 183f, 233
Linkage analysis, in disease, 103
Lithium
action of, 266, 267f
in antidepressant augmentation, 272, 275f
in bipolar disorder, 153, 280, 281f, 282
in obsessive-compulsive disorder, 342f
Locus coeruleus, noradrenergic neurons in, 161 — 162, 164f, 239
alpha 2 antagonist effects on, 251—252
estrogen effects on, 557f
overactivity of, 307, 308f, 309f
Lorazepam, in panic disorder, 354—355
Lopinavir, 425, 431f, 453, 454f
LSD (d-lysergic acid diethylamide), 511, 512f-513f
a'-Lysergic acid diethylamide (LSD), 511, 512f—513f
Lysosomes, receptor interactions with, 46f
Magnesium modulatory site, of glutamate receptor, 387, 390f-391f
Mania, See also Bipolar disorder
depression with, 136
description of, 136
diagnostic criteria for, 139f
excitotoxicity in, 122, 393f
pathogenesis of, 128
Treatment of
anticonvulsants in, 267—271, 268t, 269f—270f
antipsychotic drugs in, 271, 444, 445f
benzodiazepines in, 271
li thium in, 266-267, 267f
MAO, See Monoamine oxidase
Maprotiline, in depression, 290f, 293f
Marijuana, 515—518, 517f, 518f
anandamide resembling, 504, 504f, 516—517, 517f
Mazapertine, 455
MDL-100907 (dual serotonin 2 antagonist/
serotonin reuptake inhibitor), 262, 455
MDMA (3,4-methylenedioxymethamphetamine), 511, 512f-513f, 513
Melatonin, in insomnia, 332
Memory
disorders of, See also Alzheimer's disease
in cholinergic dysfunction, 469—471, 471f—473f
cholinesterase inhibitors in, 479—488, 480f—489f
in dementia, 478-479
estrogen in, 553
marijuana-induced, 517 — 518
after menopause, 567
mild, treatment of, 491—492
research strategies for, 492-497, 493f-495f
unproven therapies for, 489—492
estrogen effects on, 567
long-term potentiation in, 387, 390f
neuropharmacology of, 467—471
acetylcholine destruction and renewal in, 467-468, 469f
acetylcholine receptors in, 468—469, 470f
acetylcholine synthesis in, 467, 468f
Menopause
estrogen levels in, mood changes and, 557, 558, 561f-563f, 562, 565-566
verbal memory loss after, 567
Menstrual cycle
disorders of, antipsychotic drug-induced, 406, 407f
estrogen variation during, mood changes and, 556, 558, 561f-563f, 562, 565-566
verbal memory loss after, 567
Meprobamate, in anxiety, 324
Mesocortical dopamine pathway
in schizophrenia, 374-377, 375f, 377f, 378f, 404, 405f
serotonin-dopamine interactions in, 419, 421, 425f-427f
in sexual response, 540, 540f
Mesolimbic dopamine pathway
reward and reinforcement in, 503 — 505, 503f, 504f
alcohol and, 524 cocaine and, 506, 509
nicotine and, 518-519, 520f
serotonin-dopamine interactions in, 423
N-methyl-d-aspartate receptor, 387, 390f—392f, 397f
alcohol action at, 522, 524, 531f
phencyclidine action at, 515, 515f, 516f
3,4-Methylenedioxymethamphetamine, 511, 512f—513f
Methylphenidate
in attention deficit disorder, 461—462, 462f
in social phobia, 361
tricyclic antidepressants with, 275f, 279, 280f
Mood
changes of, with estrogen levels, See Estrogen, mood changes and disorders of, See also
Bipolar disorder; Depression; Mania
menstrual magnification of, 560
regulation of norepinephrine in, 165f
serotonin in, 178, 182f
Mood stabilizers, 266—271
anticonvulsants, 267-271, 268t, 269f-270f, 272f
antipsychotic drugs, 271, 444-446, 446f
in attention deficit disorder, 466—467
benzodiazepines, 271 lithium, See Lithium
Morphine, 521, 530f
Motor disturbances in schizophrenia, 375f, 377-378, 379f
Mouth, dry, antipsychotic-induced, 410f
Muscarinic cholinergic receptors, 468—469, 470f blocking of, antipsychotics in, 408-409, 409f-411f in selective noradrenergic reuptake inhibitor action, 240 in tricyclic antidepressant action, 222, 223f, 225f
Naftidrofuryl, in Alzheimer's disease, 490 Nalmefene, in alcohol abstinence, 524 Naloxone, as opiate antagonist, 521 Naltrexone in alcohol abstinence, 524 as opiate antagonist, 521 Natural highs, 503-505, 503f, 504f NDRIs (norepinephrine-dopamine reuptake inhibitors), 241-242, 241f, 242f in drug combinations, 275f, 286, 288, 286f-290f, 292f-294f Necrosis, of neurons, 24, 26f, 117 Nefazodone in anxiety, 305 CYP450 enzyme interactions with, 217t, 439, 443f in depression action of, 256-257, 258f-259f, 262 CYP450 enzyme interactions with, 217t in drug combinations, 289f, 291f, 294f drug interactions with, 210, 215f psychotherapy with, 295 selective serotonin reuptake inhibitors with, 284f, 285f-286f, 289f, 291f, 294f in insomnia, 332 in panic disorder, 353, 356f, 357 in posttraumatic stress disorder, 363 in social phobia, 360—361 Negative symptoms antipsychotic drug-induced, reduction of, 419, 421, 425f-427f of schizophrenia, 369-370, 371f, 373t mesocortical dopamine pathway in, 374-377, 375f, 377f, 378f, 404, 405f treatment of, 447-448, 448f Nemonapride, 455, 456 Neologisms, in schizophrenia, 370 Neurobiology, 100-101, 101t Neurodegenerative disorders, See Degenerative disorders Neurodegenerative hypothesis, of schizophrenia, combined with neurodevelopmental hypothesis, 397, 399f Neurodevelopment, 24—32 abnormal disease in, 111-113, 112f-116f schizophrenia in, 380-385, 381f-385f apoptosis in, 24, 25f, 26f, 27 in Alzheimer's disease, 472, 474f, 476f Neurolepsis, definition of, 402 Neuroleptic malignant syndrome, 408 Neuroleptic-induced deficit syndrome, 404, 405f Neuroleptics, See Antipsychotic drugs (conventional or unspecified type) Neuromodulators, description of, 6, 8f Neuron(s) anatomically addressed, 3 — 5, 5f, 7f apoptosis of, See Apoptosis, of neurons arborization of, 25f, 30, 30f-32f dendritic tree pruning in, 30, 32f, 122, 127f, 128f migration in, 25f, 27—28 abnormal, 111, 113f, 380, 381f, 382f neurotrophic factors in, 25, 27—29, 27f, 28f, 31-32 normal, 382f synapse formation and remodeling in, 25f, 28—31, 29f time course of, 25f Neuroleptic hypothesis of schizophrenia, combined with neurodegenerative hypothesis, 397, 399f Neuroleptic-induced deficit syndrome, 408 Neurokinin(s), 19t antagonists of, 266 in schizophrenia, 456—457 Neurokinin 1 receptor, substance P and, 188, 190—191, 192f-196f, 193-194 Neurokinin 2 receptor, 192f, 194-195, 195f, 196f Neurokinin A, 192f, 194-195, 195f, 196f Neurokinin B, 192f, 195, 197f Neurokinin hypothesis of emotional dysfunction, 188, 190-195 neurokinin A and neurokinin 2 receptors, 192f, 194-195, 195f, 196f neurokinin B and neurokinin 3 receptors, 195, 197f substance P and neurokinin 1 receptors, 188, 190-191, 192f-196f, 193-194 Neuroleptic, definition of, 402 Neuroretinal excitotoxicity, 311—312, 312f—313f Neuronal membranes of permeability of, 42f, 43f, 46, 51f, See also Ion channels receptors in, 36-37, 36f-38f, 40f, 41f, 43f migration of, 25f, 27-28 abnormal, 111, 113f, 380, 381f, 382f monoaminergic, See Monoaminergic neurons; specific type myelination of, 25f
Neuron(s) (Continued) necrosis of, 24, 26f, 117 noradrenergic, 157-162, 158f-164f, 164f in locus coeruleus, 239-251—252 number of, 3 organization of, for synaptic information transmission, 1—2, 2f—4f plasticity of, see Plasticity, of neurons postsynaptic, 4f, 5f presynaptic, 4f, 5f redundancy of, 24 selection of, 111, 112f serotonergic, 163, 170f-184f, 172-173, 176, 178f, 185t structure of, 30f synapses of, see Synapses transplantation of, 121f, 122 in Alzheimer's disease, 496 undeveloped, 116f wiring of abnormal, 112-113, 115f normal, 114f Neuropeptides in Alzheimer's disease, 196 degradation of, 9, 12f receptors for, dysfunction of, obesity in, 503-505, 503f, 504f number of, 18 replacement of, in Parkinson's disease, 130, 132f retrograde, nitric oxide as, 542 reuptake of, active transport in, 42f, 43f, 46—49, 51f-53f temporary, 6, 8f, 17f in disease, 99—133 biological psychiatric studies of, 101-103, 102f degenerative, 114, 116f, 117-120, 118f-121f development of, 111-113, 112f-116f enzymes in, 99—100 from excess excitation, 122, 123f—129f, 124, 126, 128, 130 genetic factors in, 103, 106, 107f life events and, 107-108, 108f-111f neurobiologic studies of, 100—101, 101t in neurotransmission absence, 130, 131f, 132f in neurotransmitter imbalance, 130, 132f factor supplementation and, 117-120, 118f-120f psychopharmacology studies of, 104—105, 105f receptors in, 99—100 fast-onset, 6, 8f, 14 first messengers in, 13f, 14, 49, 54f, 69 gene regulation in, 56, 59f—65f, 61—62 goal of, 14, 18 ion channels in, see Ion channels ion regulation in, 56, 57f, 58f molecular biology of, 21-24, 22f, 23f nonsynaptic (volume), 5—6, 7f plasticity in, see Plasticity postsynaptic events in, 9, 13—14, 13f, 15f—17f, 18 presynaptic events in, 6, 9, 10f—12f rate of, wrong, 130 receptors in, see Receptor(s) second messengers in, see Second messengers in sexual response, 540-542, 540f-545f, 545 slow-onset, 6, 8f, 14 synapses in, see Synapses teamwork in, 39-41, 41f, 42f, 44f-47f transport carriers in, 42f, 43f, 46, 51f volume (nonsynaptic), 5—6, 7f Neurotransmitter(s), see also Neurotransmission; specific neurotransmitters as agonists, 82-83, 83f-84f inverse, 83f, 84, 87f, 88f, 319-320, 320f, 321f partial, 83f, 85-89, 89f-96f, 320-321, 321f as antagonists, 83, 85f, 86f, 88f, 90f binding of, to inverse agonists, 83f, 84, 87f, 88f classical, 18 co-transmission and, 20, 20t vs. allosteric modulation, 96—97 imbalance of, 130 mobilization of, in electroconvulsive therapy, 288f, 294 monamine, see Dopamine; Monoamine neurotransmitters; Norepinephrine multiple, 18-20, 19t, 20f, 78, 79f naturally occurring, 18-19, 19t as agonists, 82—83 pleasure from, 503-505, 503f, 504f number of, 18 replacement of, in Parkinson's disease, 130, 132f retrograde, nitric oxide as, 542 reuptake of, active transport in, 42f, 43f, 46—49, 51f-53f shuttle system for, 52f types of, 18-20, 19t, 20f, 154 Neurotransmitter receptor hypothesis of depression, 185-186, 185f, 186f, 188f, 189f selective serotonin reuptake inhibitors and, 227 Neurotrophic factors in Alzheimer's disease, 496 in development, 25, 27-29, 27f, 28f, 31-32 in disease pathogenesis, 117—120, 118f—120f estrogen as, 551-556, 553f-560f supplementation with, 117—120, 118f—120f Nicotine, 518-521, 519f, 520f, 523f-528f acetylcholine resembling, 504, 504f Nicotinic receptors, 468-469, 470f, 518-519, 520f, 523f-524f drugs targeting, in Alzheimer's disease, 492—493, 494f
Nigrostriatal dopamine pathway
acetylcholine activity in, 408-409, 410f in attention deficit disorder, 464, 466f
dysfunction of, tardive dyskinesia in, 406 in schizophrenia, 375f, 377-378, 379f, 404,
405f, 406, 406f, 407 serotonin-dopamine
interactions in, 415—418, 416f-424f

Nimodipine, in Alzheimer's disease, 490

Nitric oxide, in sexual response, 541 — 542, 54lf—545f, 545

Nitric oxide synthetase
action of, 542, 543f
enhancement of, 551f
inhibitors of, erectile dysfunction due to, 550, 550f

Nitrous oxide, vs. nitric oxide, 542

NMDA (N-methyl-D-aspartate) receptor, 387-389, 390f-392f, 397f, 515, 515f, 516f

Nocturnal panic attacks, 346

Nonsteroidal anti-inflammatory drugs, in Alzheimer's disease, 492

Nootropic drugs, in Alzheimer's disease, 491

Norepinephrine
accumulation of, in tyramine-monoamine oxidase inhibitor interaction, 220f
antidepressant effects on, 179—180, 185 in attention regulation, 165f, 460, 46lf
deficiency of, 161-162, 164t
vs. serotonin deficiency, 236—238
destruction of, 157, 159f, 218f-220f excess of in panic disorder, 348-349, 349f
symptoms of, 308f, 310f inactivation of, 157-158, 159f inhibitors of in anxiety, 306-307, 308f-311f, 309, 311 tricyclic antidepressants as, 220 neurons, 157-162, 158f-164f, 164t
in locus coeruleus, 161, 164f, 239, 251-252, 307, 308f, 309f receptors for, 158-161, 160f-163f, 172f, 176, 176f-178f, 239, 240 in tricyclic antidepressant action, 222, 223f, 224f release of alpha 2 antagonist effects on, 251—254, 253f—257f
normal, 155f with serotonin release, alpha 2 antagonists in, 251-254, 255f-257f reuptake of, See Norepinephrine reuptake in serotonin regulation, 172f, 176, 177f—179f, 178, 178f, 182f-184f
serotonin synergism with, 248—249, 249f—250f in sexual response, 542, 545f slow onset of, 6, 8f
synthesis of, 157, 158f transport pump for, 158, 159f, 160f Norepinephrine reuptake, 218f

Normal pressure hydrocephalus, dementia in, 478

Nortriptyline
in depression, 290f, 293f, 295 in panic disorder, 353—354

NRIs (norepinephrine reuptake inhibitors), 241 — 242, 241f, 242f, 275f, 286, 288, 286f—290f, 292f, 293f in depression, See also Selective norepinephrine reuptake inhibitors in Alzheimer's disease, 492

Obesity, 528-530, 534-537
antipsychotic drug-induced, 529, 536t
erectic dysfunction in, 547 genetic factors in, 535 receptor blocking and dysfunction in beta3-adrenergic, 534—535 histamine-1, 529-530 leptin, 534-535 neuropeptide, 534-535 serotonin, 530, 534 Obsessions, 336, 337t, 338t

Olanzapine, 431f, 434-435, 436f efficacy of, 430f metabolism of, 437-438, 439f-442f as mood stabilizer, 271 in schizophrenia, 447, 448f Ondine's curse, vs. panic disorder, 350—352
OPC14523 (sigma antagonist), in schizophrenia, 456

Opioids
abuse of, 521-522, 529f, 530f
naturally occurring, 19t, 503-505, 504f, 521, 529f
Oppositional defiant disorder, treatment of, 448, 449f

Oral contraceptives, depression due to, 564

Orgasm, psychopharmacology of, 542, 544f, 545, 545f, 552f

Orphan receptors, 24

Over-the-counter agents, in insomnia, 332

Over-the-counter agents, in insomnia, 332

Oxycodone, 530f

Panic
excitotoxicity in, 122
regulation of, serotonin in, 178, 183f
Panic attacks
in benzodiazepine withdrawal, 526
cholecystokinin-induced, 350
clinical description of, 346, 346t
cocaine-induced, 505
duration of, 346
expected vs. unexpected, 346—347
flumazenil-induced, 350
vs. hallucinogen intoxication, 511
vs. norepinephrine excess, 348—349, 349f
vs. panic disorder, 346—347, 346t
pathogenesis of, 125f, 126f, 128
in phobic disorders, 358—359
in posttraumatic stress disorder, 362
respiratory hypothesis of, 350—352
selective serotonin reuptake inhibitor-induced, 233
triggering events in, 346—347
Panic disorder, 346-358
agoraphobia with, 358
biological basis of, 348-352
neurotransmitter dysregulation, 348—350, 349f, 350f
neuroanatomy of, 352
in norepinephrine excess, 348—349, 349f
vs. panic disorder, 346—347, 346t
pathogenesis of, 125f, 126f, 128
in phobic disorders, 358—359
vs. panic disorder, 359
in posttraumatic stress disorder, 362
respiratory hypothesis of, 350—352
selective serotonin reuptake inhibitor-induced, 233

Paranoid
coke-induced, 505
in phencyclidine intoxication, 514
Paranoid psychosis, 367
in cocaine use, 506, 508f
Parkinson's disease
dementia in, 479
in dopamine deficiency, 377
drug-induced, 404, 405f
neuronal degeneration in, 124, 126, 129f, 130, 132f
neuronal transplantation in, 121f, 122
selective serotonin reuptake inhibitor-induced, 233
treatment of antipsychotic drugs in, 444, 445f
free radical scavengers in, 394
Paroxetine
CYP450 enzyme interactions with, 217f, 442f
in depression action of, 222, 236f
CYP450 enzyme interactions with, 217f in drug combinations, 293f
in panic disorder, 352
in social phobia, 360
Partial agonists, 83f, 85-89, 89f-96f
benzodiazepine receptor interactions with, 320—321, 321f, 324, 358
PCP (phencyclidine), 514-515, 514f-516f
PCP (phencyclidine) modulatory site, of glutamate receptor, 388, 391f-392f, 515, 515f, 516f
Pemoline, in attention deficit disorder, 461
Pen, erection of dysfunctional, 545-551, 546f-552f
psychopharmacology of, 541—542, 541f—545f, 545
Pentoxifylline, in Alzheimer's disease, 490
Peptidase, catalytic, 9, 12f
Peptides, See Neuropeptides
as neurotransmitters, 19t, 20
Perceptin, in attention deficit disorder, 467
Perception, in attention deficit disorder, 467
Perceptual distortions, in psychosis, 366—367
Perimenopause, estrogen levels in, mood changes and, 557, 558, 56f, 56f-56f, 56f-56f
Persecutory delusions, in schizophrenia, 368
Personality, disease vulnerability and, 108 — 110, 109f
Pharmacogenetics, 105
Pharmacokinetics, of Antidepressants, See Antidepressants, Pharmacokinetics of Phencyclidine, 514-515, 514f-516f
Phencyclidine modulatory site, of glutamate receptor, 388, 390f-391f, 515, 515f, 516f
Phenothiazines
as mood stabilizers, 271
structures of, 223f
Phentermine, in depression, in drug combinations, 291f-293f

593
Index
Index

Index

Prolactin
activation of, 56, 59f, 61, 64f in gene activation, 22f, 56, 59f, 61 in neurotransmission, 42f Protein kinase A in dual serotonin 2A antagonist/serotonin reuptake inhibitor action, 262f—263f in selective serotonin reuptake inhibitor action, 249f-250f Protein kinase C in dual serotonin 2A antagonist/serotonin reuptake inhibitor action, 265f in selective serotonin reuptake inhibitor action, 250f Protriptyline, in depression, 290f, 293f Pruning, of dendritic tree, 30, 32f, 122, 127f, 128f Pseudocholinesterase (butyrylcholinesterase), in acetylcholine destruction, 467-468, 469f Pseudodementia, in depression, 479 Pseudomonamine hypothesis of depression, 187—188, 188f, 189f Psilocybin, 511, 512f-513f Psychedelic hallucinations, 510 Puberty, estrogen levels in, mood changes and, 556, 558, 561f, 562f, 563 Pupils, dilation of, in anxiety, 308f, 310f Quetiapine, 431f, 435, 437f efficacy of, 430f metabolism of, 439-440, 442f, 443f in schizophrenia, 447, 448f Raphe nucleus, 232 serotonergic neurons in, 176, 178, 179f, 182f—184f Rapid cycling, in bipolar disorder, 136 Rebound, in drug use, 500f, 501 vs. relapse, 500t, 502-503 Rebound insomnia, 331 — 332 Reboxetine in attention deficit disorder, 467 in depression action of, 234-235, 237f, 238f, 239-240 CYP450 enzyme interactions with, 217f in drug combinations, 286, 287f, 290f, 293f efficacy of, 239 indications for, 238-239, 239f response to, 236—237 selective serotonin reuptake inhibitors with, 250 side effects of, 240 in panic disorder, 353 Receptor(s), 35—71, See also Autoreceptors; Heteroreceptors acetylcholine, 468-469, 470f adrenergic alpha, 222, 223f, 226f beta3, 534-536 alcohol, 313, 316f allosteric modulation of, 89-97 vs. co-transmission, 96—97 negative, 94—96 positive, 92-94, 97f alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 387, 390f androgen, 441 barbiturates, 313, 316f benzodiazepine, 312-317, 318f-323f, 319-322 adaptation of, in chronic use, 526, 534f excess of, in panic disorder, 350, 351f cannabinoid, 516-517 antagonists of, 456 cholecystokinin, 350 in PCP intoxication, 515, 516f vs. schizophrenia, 368 treatment of, See Antipsychotic drugs Psychotherapy, 345 in obsessive-compulsive disorder, 294-295 for social phobia, 361—362 Psychotic depression positive symptoms in, 368, 370f treatment of, 445 Psychotomimetic hallucinations, 510 Puberty, estrogen levels in, mood changes and, 556, 558, 561f, 562f, 563 Pupils, dilation of, in anxiety, 308f, 310f
Index

Heteroreceptors (Continued)
cholinergic, drugs targeting, 492—493, 493f, 494f
definition of, 78
description of, 78
dopamine, 163, 169f
 blockade of, antipsychotics in, 402-407, 403f, 404f, 405f-407f
 substance abuse and, 504-505, 504f
dopamine, 163, 169f
 blockade of, antipsychotics in, 402-407, 403f, 404f, 405f-407f
 substance abuse and, 504-505, 504f
down-regulation of, 65, 66f, 68f
 drug action at, 492
 estrogen, in brain, 551—553, 553f—558f
 extracellular portion of, 36—37, 36f—38f
 four-transmembrane region of, 39, 41f, 44f, 79
 superfamily based on, 79—81, 81f, 82f
 function of, in disease, 99-100
 teamwork in, 39-41, 41f, 42f, 44f-47f
 G proteins as, See G proteins
galanin, 536-537
gamma-aminobutyric acid, 312-313, 314f—316f
 agonists and antagonist effects on, 319—322, 320f-323f
 alcohol action at, 522, 524, 531f, 532f
 benzodiazepine receptor allosteric modulation of, 316-317, 318f, 319, 319f, 526, 533f—535f, 526, 533f
 in gene regulation, 56, 59f—65f, 61—62
 glutamate, 387-389, 390f-393f, 515, 515f, 516f
 histamine, See Histamine receptors
 intracellular portion of, 36, 36f—38f, 39 in ion channel function, 44, 50f in ion regulation, 56, 57f, 58f kainate, 387, 390f
 leptin, 536—537
 N-methyl-d-aspartate, 387-389, 390f-392f, 515, 515f, 516f
 monoamine neurotransmitter, 9, 11f
 multiple subtypes of, 78—81, 79f—82f
 muscarinic, See Muscarinic cholinergic receptors
 neurokinin 1, substance P and, 188, 190—191, 192f-196f, 193-194
 neurokinin 2, neurokinin A and, 192f, 194 —195, 195f, 196f
 neuropeptide, 536—537
 neurotransmitter, disturbances of, depression in, 187-188, 188f, 189f metoclopramide, 468-469, 470f, 518-519, 520f, 523f-524f
drugs targeting, 492-493, 494f
norepinephrine, See Norepinephrine, receptors for opioid, 521-522, 529f, 530f
 organization of, 36-39, 36f-38f, 40f, 41f, 43f orphan, 24
 pharmacologic subtyping of, 78, 79f picrotoxin, 313, 316f primary, 90-91
 progeroine, 441 second messenger interactions with, See Second messengers
 secondary, 90—91

selectivity of, 78
serotonin, See Serotonin, receptors for seven-transmembrane region of, 361—38f, 39, 40f, 44f, 79-80, 80f
 antagonists of, 456 superfamilies of, 39, 78-81, 80f-82f
 synthesis of, 14, 16f, 23
 regulation of, 65, 66f-68f, 69 top view of, 38f
 transmembrane portion of, 36—37, 36f—38f, 39, 40f, 41f
 transport carriers as, 42f, 43f, 46, 5f twelve-transmembrane region of, 39, 41f, 44f up regulation of, 65, 67f, 68f, 69 zaleplon, 313
zolpidem, 313

Recovery, from depression, 142, 142f, 143f
 Recurrence, of depression, 142, 144f, 144t, 150, 150t
 Regulatory region, of gene, 21, 22f
 Reinforcement mesolimbic dopamine pathway in, 503 — 505, 503f, 504f
 in substance abuse, 500-501, 500t

Relapse in depression, 142, 144f, 148, 149f in drug use and abuse, 500t, 502 —503 in panic disorder, 357 in schizophrenia, 408 Remission, in depression, 1, 12, 142, 143f, 147 — 148, 148t, 151-152, 151t
 partial, 151, 151t
 Respiratory hypothesis, of panic disorder, 350-352
 Response to Alzheimer's disease treatment, 486—487, 487f-489f to depression treatment, 142, 143f, 144-145, 147-148, 147f-149f, 148t, 149t, 151-152, 151t
 Restlessness, selective serotonin reuptake inhibitor-induced, 233
 Retardation, in psychosis, 367 — 368

Reuptake blocking of, 201, 203f, 204f dopamine, See Dopamine, reuptake of neurotransmitter
 active transport in, 42f, 43f, 46-49, 51f—53f
 monoamine, 9, 11f norepinephrine, See Norepinephrine reuptake;
 Norepinephrine reuptake; Selective norepinephrine reuptake inhibitors serotonin, 219, 224f, See also Selective serotonin reuptake inhibitors
 tricyclic antidepressant action on, 219, 224f
 Reversible monoamine oxidase inhibitors, 215, 217, 221f
 in panic disorder, 354, 358

Reward mesolimbic dopamine pathway in, 503 — 505, 503f, 504f
 alcohol effects on, 524 cocaine effects on, 506, 509 nicotine effects on, 518-519, 520f terminology of, 500-501, 500t
 RIMAs (reversible monoamine oxidase inhibitors), 215, 217, 221f
 in panic disorder, 354, 358
Risperidone, 425, 433-434, 433f, 434f
efficacy of, 430f
metabolism of, 438-439, 441f, 442f
as mood stabilizer, 271
in schizophrenia, 447, 448f
Ritanserin, 455
Rivastigmine, in Alzheimer's disease, 481—482, 482f, 484f, 485
RNA, DNA transcription to, 21
RNA polymerase
action of, 21, 22f
in neurotransmission, 42f
Rolipram, in depression, 264
St. John's wort, in depression, 266 SARIs
(serotonin 2 antagonists/serotonin reuptake inhibitors), in depression, 256—257, 258f—265f, 261-262, 263f
SARIs, in depression, 256—257, 258f—265f, 261-262, 263f
Schizoaffective disorder
aggressive symptoms in, 372f, 373
positive symptoms in, 368, 370f
treatment of, 444, 445f, 445f
Schizophrenia, 368—398
asymptomatic, 385, 386f
vs. cocaine intoxication, 506, 508f
combined neurodevelopmental/neurodegenerative hypothesis of, 397, 399f
definition of, 368
dopamine hypothesis of, 374—380, 375f
neurocortical dopamine pathway, 374—377, 375f, 377f, 378f, 404, 405f
mesolimbic dopamine pathway, 374, 375f,
376f, 404, 407 nigrostriatal dopamine pathway, 375f, 377f,
378f, 379f, 404, 405f, 406, 406f, 407
tuberoinfundibular dopamine pathway, 375f,
378, 379f, 380 epidemiology of, 368
estrogen status and, 562
exacerbations of, 385, 386f
genetic factors in, 106, 381-385, 384f-385f
mood stabilizers in, 271
neurodegenerative hypothesis of, 385 — 392, 386f
excitotoxicity in, 386—387
glutaminergic neurotransmission defects in,
387-392, 388f-396f
neurodevelopmental hypothesis for, 380—385
381f-385f vs. neuroleptic-induced deficit syndrome, 404,
405f
neuronal degeneration in, 117, 124, 126, 129f
phases of, 385, 386f predisposition to, 111f
prodromal stage of, 385, 386f vs. psychosis, 368
relapse of, 408 symptoms of, 368—374, 369f
aggressive and hostile, 372f, 373, 444, 449f
cognitive, 370, 371f, 374-377, 375f, 377f, 378f,
379f, 446—447, 447f
depressive and anxious, 372f, 373 — 374 negative, 369-370, 371f,
373t, 374-377, 375f, 377f, 378f, 447-448,
448f
positive, 368-369, 369f, 373f, 374, 376f,
444, 445f
treatment of, See also Antipsychotic drugs
aggressive symptoms, 448, 449f
clozapine in, 432—433
cognitive enhancers in, 446—447, 447f
degeneration inhibitors in, 392, 397f, 398f
future, 457-458
hostile symptoms, 448, 449f
mood stabilizers in, 444-446, 446f
new agents in, 455-456, 456-457
olanzapine in, 435, 447, 448f
polypharmacy in, 449, 450f-452f, 451-452,
457-458
positive symptoms, 444, 445f
presymptomatic, 394, 397 quetiapine in,
435, 447, 448f
risperidone in, 433-434, 433f, 434f,
447, 448f
sertraline in, 455
ziprasidone in, 436, 447, 448f
Scopolamine, in insomnia, 332
Second messengers, 13f, 14, 15f, 44f, 49, 53, 54f, 55f, 56
in gene regulation, 56, 59f-60f, 61, 69
in ion regulation, 56, 57f, 58f in nitric oxide synthesis,
542, 543f synthesis of, 55f, 57f
Sedation, clozapine-induced, 432
Sedative-hypnotics, in insomnia, 326, 329f
abuse of, 527-528, 536f
antidepressants, 329t, 332 benzodiazepines, 329-
332, 329t, 330f, 331f
chloral hydrate, 332 — 333
nonbenzodiazepine short-acting, 326 — 329, 327f,
328f
older, 332-333
over-the-counter, 332
Seizures
in benzodiazepine withdrawal, 527
clonazepam-induced, 432, 433
cocaine-induced, 505
excitotoxicity in, 122
pathogenesis of, 128
Selective estrogen receptor modulators, psychologic response to, 555
Selective norepinephrine reuptake inhibitors, in depression, 234—241
action of, 234-235, 237f, 238f, 239-240 in dual serotonin-norepinephrine reuptake inhibitors, 246-250, 246f-250f in drug combinations, 286, 286f-287f, 288
efficacy of, 239
indications for, 238—239, 239t
response to, 236-237
side effects of, 240
Selective serotonin reuptake inhibitors
action of, dual, 246-250, 246f-250f, 256-257, 258f-265f,
261-262 immediate, 227-228, 229
medication of, 230-234, 232t, 233t
in anxiety, 302-303, 304f, 305-306, 307f in appetite suppression, 534
Selective serotonin reuptake inhibitors (Continued) in depression, 222, 225—234
action of, 226f-232f, 246-250, 246f-250f, 256-257, 258f-265f, 261-262 as CYP450 inhibitors, 209-210, 212f, 213f in drug combinations, 275f, 285f, 289f, 291f, 293f
extended-release, 234
indication for, 237
individual responses to, 234, 235f — 237f
list of, 222, 226t
new, 234
overdose of, 225
pharmacology of, 222, 225, 226f-232f, 227-230, 234, 235f-237f
receptors for, 230—234
side effects of, 232—233
tricyclic antidepressant interactions with, 209-210, 212f, 213f
erectile dysfunction due to, 550, 550f— 552f
in obsessive-compulsive disorder, 339, 341, 342f, 343-345, 344t
in panic disorder, 352, 353t, 355, 356f, 357
in posttraumatic stress disorder, 362—363, 364f
in social phobia, 360
Self—punishment, anxious, in psychosis, 368
Semaphorins, 28-29, 28f
Serotonergic neurons, 163, 170f— 184f, 172-173, 176, 178, 178t, 185t
Serotonin antidepressant effects on, 179—180, 185f
deficiency of, 178, 185t
vs. norepinephrine deficiency, 236—238
in obsessive-compulsive disorder, 338—340
destruction of, 164, 171f dopamine interactions with, See Serotonin-dopamine antagonists hallucinogens resembling, 511, 513 — 514, 512f, 513f
inhibitors of, See Selective serotonin reuptake inhibitors
receptors for, 164, 172-173, 172f-177f 2A,
dual serotonin 2 antagonist/sertotonin reuptake inhibitors effects on, 256—257, 258f-265f, 261-262
action of, in side effects, 232—233
blocking of, obesity in, 530, 534 in tricyclic antidepressant action, 222, 223f,
224f
up-regulation of, 227, 228f
regulation of
estrogen in, 553, 556f
norepinephrine in, 176, 177f-179f, 178, 178t, 182f-184f
release of
alpha 2 antagonist effects on, 251—254, 252f—257f
at axon terminals, 229, 229f, 231f
with norepinephrine release, alpha 2 antagonists in, 251-254, 251f—257f in sexual response, 542, 545, 545f slow onset of, 6, 8f
synthesis of, 163-164, 170f transport of, 164, 171f, 172f
Serotonin reuptake inhibitors, See Selective serotonin reuptake inhibitors serotonin-dopamine antagonists, 262, 265, 414—424, 414f
in bipolar disorder, 262
in depression, 262, 265
in mesocortical pathway, 419, 421, 425f-427f in mesolimbic pathway, 423 new, 455-456 in nigrostriatal pathway, 415—418, 416f—424f
summary of, 423—424
in tuberoinfundibular pathway, 422, 427f—429f
Sertindole, 453-455, 454f, 455f
metabolism of, 439-440, 442f, 443f
Sertraline
in depression action of, 222, 236f, 265
CYP450 enzyme interactions with, 217f, 442f
in panic disorder, 352 in social phobia, 360
Sexual dysfunction
acting out, in schizophrenia, 373
erectile dysfunction, 545-551, 546f-552f
selective serotonin reuptake inhibitors and, 233
Sexual function
hormones in, See Estrogen; Testosterone regulation of, serotonin in, 178, 184f sexual response in, 540-542, 540f-545f, 545 Sexual response in, 541, 541f, 542, 545, 545f, 552f
drug effects on, 550-551, 552f libido in, 540-541, 540f, 552f nitric oxide action in, 541-542, 543f, 544f ergasim in, 542, 544f, 545, 545f, 552f overview of, 542, 545, 545f
Sibutramine
in appetite suppression, 534, 535 in depression, 247
Side effects, See also Extrapyramidal symptoms;
Tardive dyskinesia of anticholinergic agents, 409 of antipsychotic drugs atypical, 423-424, 428, 440
clozapine, 432—433 conventional, 408, 409, 411, 412f, 413-414
olanzapine, 435 quetiapine, 435 spectrum of, 430f ziprasidone, 436
drug benzodiazepines, 315, 320, 321f of clozapine, 432—433 of dual serotonin 2 antagonists/serotonin reuptake inhibitors, 260, 261 of dual serotonin-norepinephrine reuptake inhibitors, 247, 248f
of lithium, 266—267 of mirtazapine, 255f, 256f of olanzapine, 435
Index
Side effects (Continued)
of selective norepinephrine reuptake inhibitors, 232—233
of selective serotonin reuptake inhibitors, 225f, 226f
of tricyclic antidepressants, 219—220, 225f, 226f
of valproic acid, 268—269
Sigma antagonists, in schizophrenia, 456
Signal peptidase, in substance P formation, 193,
193f
Signal transduction, defects of, in neurotransmitter action, 187—188, 188f, 189f
Sildenafil, in erectile dysfunction, 548, 550f, 552f
Simple (specific) phobias, clinical description of, 358—359
Sleep disorders of, See also Insomnia anxiety with, treatment of, 279 in posttraumatic stress disorder, 362 selective serotonin reuptake inhibitor-induced, 233
Ondine’s curse in, vs. panic disorder, 350—352
Smoking cessation of, 518—519, 520f, 521, 527f as CYP450 inducer antidepressants and, 211—212, 216f
antipsychotics and, 438, 440f nicotine pharmacology in, 518—521, 519f, 520f, 523f-528f SR46349 (dual serotonin 2 antagonist/serotonin reuptake inhibitor), in depression, 262
SR58616L(beta agonist), in depression, 264
SR141716A (cannabinoid antagonist), 518 in schizophrenia, 456
SR142948 (neuotensin antagonist), in schizophrenia, 456
SSRIs, See Selective serotonin reuptake inhibitors
Steroids, neuroactive, in anxiety, 324
Stimulants, See also specific agents, e.g., Amphetamines; Cocaine in attention deficit disorder, 461—462, 462f—466f, 465—466 in drug combinations, 286, 286f, 288, 288f,
289f, 291f-293f vs. nicotine, 517—518
Stress anxiety disorders in, 303f
brain-derived neurotrophic factor repression in, 187-188, 188f, 189f
posttraumatic stress disorder after, 110, 111f,
362-363, 363f, 364f
psychiatric disorders and, 107-109, 108f-111f Striatum, dopamine projections to, See Nigrostriatal dopamine pathway
Stroke(s)
cocaine-induced, 505 glutamate excitotoxicity in, 393f hostility in, 448, 449f multiple, dementia in, 478 neuronal degeneration in, 592 Substance abuse, 499—537 addiction in, 500t, 501 aggressive symptoms in, 372f, 373 alcohol, 522, 524-525, 531f, 532f receptor for, 313, 316f in social phobia, 360 amphetamines, 509, 510f-512f benzodiazepines, 526—527, 533f—535f cocaine, 505-509, 506f-508f cross-tolerance and cross-dependence in, 500t,
501 definition of, 500f dependence in, 500t, 501-502 detoxification in, 502 endocannabinoids, 516—517f food, obesity in, 528-530, 534-537, 536f hallucinogens, 510-515, 512f-516f intoxication in, 501 marijuana, 515, 518, 517f, 518f nicotine, 518-521, 519f, 520f, 523f-528f antidepressants and, 211—212, 216f antipsychotics and, 438, 440f opioids, 521-522, 529f, 530f rebound in, 500t, 501 reinforcement in, 500-501 relapse in, vs. rebound, 500t, 502—503 reward in, 500t—501 mesolimbic dopamine pathway in, 503 — 505, 503f, 504f in schizophrenia, 448 schizophrenic-like effects of, 374 sedative-hypnotics, 527 — 528, 536f
Index

Substance abuse (Continued)
terminology of, 499-503, 500t
tolerance in, 500t, 501 vs. use, 500-501 withdrawal in, See Withdrawal Substance P, 190, 190f-195f, 193
antagonists of, in schizophrenia, 456—457 formation of, 191, 192f-195f, 193 structure of, 191, 192f Substantia nigra, dopamine projections from, See Nigrostriatal dopamine pathway Suffocation alarm theory, of panic disorder, 350—352 Suicide in depression, 139, 141t in panic disorder, 347 in schizophrenia, 373, 448 Suicide inhibition, of enzymes, 73, 74f, 213 Sulpiride, 452
Superfamilies, of receptors, 39, 78-81, 80f-82f Surgery, in obsessive-compulsive disorder, 345 Sweating, in anxiety, 308f, 310f Synapses, 1—18 abnormal development of disease in, 111-113, 112f-116f schizophrenia in, 380, 381f-383f anatomically addressed nervous system concept and, 3—5, 5f, 7f generation of, 25f, 28-30, 29f estrogen response element products in, 552—553, 553f-558f during menstrual cycle, 553-554, 559f, 560f neuron organization for, 1—2, 2f—4f neurotransmission without (volume neurotransmission), 5—6, 7f neurotransmitter reuptake at, active transport in, 42f, 43f, 46-49, 51f-53f number of, 3 postsynaptic events, 9, 13 — 14, 13f, 15f—17f, 18 presynaptic events, 6, 9, 10f—12f remodeling of, 30-31 structure of, 2, 4f temporal aspects of, 6, 8f Synaptic cleft, 4f Synaptic efficacy, See also Polypharmacy among antidepressants dual serotonin-norepinephrine reuptake inhibitors, 247-248, 248f-250f in monoaminergic systems, 285, 285f—288f serotonin 2 antagonists/serotonin reuptake inhibitors, 257, 258f-265f, 260 in serotoninergic system, 285—286, 285f in serotonin-norepinephrine system, 285, 287f, 289f-294f Tachycardia, in anxiety, 308f, 310f Tachykinin hypothesis, See Neurokinin hypothesis of emotional dysfunction Tacrine, in Alzheimer's disease, 480-481, 481f, 484f, 485 Tamoxifen, psychologic response to, 554—555 Tandospirone, in anxiety, 306 Tardive dyskinesia, 69, 378 causes of, 404, 406f clinical features of, 404 reversibility of, 406 risks of, 406 treatment of, 394 Tau proteins, in Alzheimer's disease, 472, 474f TCAs, See Tricyclic antidepressants Temazepam, in insomnia, 330, 331f Temporal lobe dysfunction, panic attacks in, 352 Terfenadine, in depression, drug interactions with, 210 Terguride, 456 Terminal autoreceptors, serotonin, 173, 174f, 175f Terror, in panic attack, 346 Testosterone in antidepressant augmentation, 279 vs. depression, 558, 561f Theophylline, fluvoxamine interactions with, 209, 210f Thioridazine, 452 Thought disorder, in schizophrenia, 370, 375 Thyroid hormone, in antidepressant augmentation, 272, 275f Tianeptine in cocaine abuse, 509 in depression, 234 Tics, obsessive-compulsive disorder and, 340 Tolerance, drug, 500t, 501 Benzodiazepines, 526—527, 534f hallucinogens, 514 opioids, 521 Topiramate in bipolar disorder, 281f, 282 as mood stabilizer, 270-271, 272f Tourette syndrome, obsessive-compulsive disorder and, 340 Tramadol, in depression, 247 Transcription factors, 18, 21, 22f activation of, protein kinase in, 56, 59f estrogen receptors as, 552—555, 555f leucine zippers as, 41, 47f, 61-62, 60f—64f multiple, 45f Transdermal patch, for nicotine withdrawal, 519 Transmembrane portion, of receptors, 36—37, 36f-38f in antidepressants, 39, 40f, 41f Transplantation, of neurons, 121f, 122 in Alzheimer's disease, 496 Transports, 42f, 43f, 46-49, 51f-53f of acetylcholine, 467-468, 469f of dopamine, 163, 167f, 168f of glutamate, 387, 389f of norepinephrine, 158, 159f, 160f of serotonin, 164, 171f, 172f Trazodone in depression, 480-481, 481f, 484f, 485 in drug combinations, 289f selective serotonin reuptake inhibitors with, 285, 285f in insomnia, 332 in obsessive-compulsive disorder, 342f in panic disorder, 356f Tremor in anxiety, 308f, 310f
Index

Tremor (Continued)
cocaine-induced, 505	norepinephrine and, 162, 166f, 240
Triazolam
in depression, drug interactions with, 210, 214f
in insomnia, 329-330, 330f
Tricyclic antidepressants, 212—222
action of, 156f, 157, 219-220, 223f-226f
nonselective, 247, 248f at serotonin synapse, 256
CYP450 enzyme interactions with, 217t
historical aspects of, 218—219
in insomnia, 329t, 332
list of, 221t
metabolism of, 209-210, 211f, 213f
monoamine oxidase inhibitors with, 279
overdose of, 225
in panic disorder, 353 — 354, 356f
selective serotonin reuptake inhibitor interactions with, 209-210, 213f
side effects of, 219-220, 225f, 226f
structure of, 218, 223f Trips, hallucinogenic, 510—511
Trophic factors
See Neurotrophic factors
Tryptophan, serotonin synthesis from, 164, 170f
Tryptophan hydroxylase, in serotonin synthesis, 164, 170f
Tuberoinfundibular dopamine path
in schizophrenia, 375f, 378, 379f, 380
serotonin-dopamine interactions in, 422, 427f—
429f Two-hit hypothesis, of psychiatric disorders, 107 —
108, 110f
Tybamate, in anxiety, 324
Tyramine, dietary, monoamine oxidase inhibitor interactions with, 214-215, 219f-221f
Tyrosine, norepinephrine synthesis from, 157, 158f Tyrosine hydroxylase
in dopamine synthesis, 157, 158f, 167f
in norepinephrine synthesis, 157, 158f
Up regulation, of receptors, 65, 67f, 68f, 69
Urinary retention, norepinephrine in, 162, 167f, 240
Valerian, in insomnia, 332
Valproic acid
in bipolar disorder, 280, 281f
as mood stabilizer, 268-269, 269f
Vascular (multi-infarct) dementia, memory disorders in, 478
Vasodilators, cerebral, in Alzheimer's disease, 490
Vasopressin, in Alzheimer's disease, 496
Venlafaxine
in anxiety, 249-250, 303-304, 304f
in attention deficit disorder, 467
in depression
action of, 246-247, 246f-250f
CYP450 enzyme interactions with, 217t
in drug combinations, 285f, 289f-291f, 291
in panic disorder, 353, 356f, 357
in social phobia, 360—361
Vesicles, in synapse, 4f
Violent behavior, in schizophrenia, 372f, 373
Visual blurring
antipsychotic-induced, 410f
tricyclic antidepressant-induced, 225f
Visual hallucinations, in hallucinogen intoxication, 510
Vitamin(s), in Alzheimer's disease, 490—491
Vitamin E
in Alzheimer's disease, 492
de generative diseases, 394, 398f
Vomiting center, serotonin action in, 178, 184f
Weight gain, See also Obesity
drug-induced
antihistamines, 529—530
antipsychotics, 411f, 412f, 529, 536f
clozapine, 433
mirtazapine, 255f, 256f
risperidone, 434
tricyclic antidepressant, 225f
Withdrawal, drug, 500t, 501-503
benzodiazepines, 331—332, 526—527
coke, 509
nicotine, 519, 525f, 526f
opioids, 521-522
YM992 (dual serotonin 2 antagonist-serotonin reuptake inhibitor), 262
YM-43611 (antipsychotic), 456
Yohimbine
action of, 254
panic attack due to, 348 — 349, 349f
Zaleplon
in insomnia, 326—329, 327f
in insomnia/anxiety combination, 279
in obsessive-compulsive disorder, 342f, 345
in panic disorder, 356f
receptor for, 313
Zinc, in Alzheimer's disease, 490—491
Zinc modulatory site, of glutamate receptor, 387, 390f-391f
Ziprasidone, 435-436, 437f, 438f
metabolism of, 439-440, 442f
in schizophrenia, 447, 448f
Zolpidem
in insomnia, 326—329, 328f
in insomnia/anxiety combination, 279
in obsessive-compulsive disorder, 342f, 345
in panic disorder, 356f
receptor for, 313
Zopiclone, in insomnia, 326—329, 328f
Zotepine, 431f, 452-453, 453f
REGISTRATION FORM FOR CME CREDIT

Essential Psychopharmacology (2nd Edition)
Stephen M. Stahl

Name of Registrant: ________________________________

Address where CME certificate is to be sent:

__

__

Number of category I CME credit hours claimed: ________
(CME fee: $10 for each credit hour; $395 discounted fee for all 54 credits)

Mail:
1. A check for the appropriate amount made payable to “UCSD, Department of Psychiatry” together with your answers and your evaluations

To:
Stephen M. Stahl, M.D., Ph.D.
Department of Psychiatry
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92037-0603
ESSENTIAL PSYCHOPHARMACOLOGY
CONTINUING MEDICAL EDUCATION
(CME) POST TEST
UNIVERSITY OF CALIFORNIA
SAN DIEGO
DEPARTMENT OF PSYCHIATRY
SCHOOL OF MEDICINE

ACCME Accreditation
The University of California, San Diego School of Medicine is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing medical education (CME) programs for physicians. The University of California San Diego School of Medicine designates this continuing medical education activity for 54 hours of category I of the Physicians' Recognition Award of the American Psychiatric Association. Each physician should claim only those hours of credit he/she actually spent on the educational activity.

European CME CNS Accreditation
The European Accreditation Committee for Continuing Medical Education designates this educational activity for up to 54 hours of CME CNS credit points. Partial credit is designated for each unit. Physicians should claim only those hours of credit that he/she actually spent on the educational activity. A 70% pass rate on unit tests is required for successful completion of this activity. Accreditation fee is waived for those physicians wishing to obtain European CNS credit.
Instructions

This CME activity incorporates instructional design to enhance your retention of the didactic information and pharmacological concepts which are being presented. You are advised to go through this program unit by unit, in order, from beginning to end. You will first study the figures and read the figure legends for a single unit of instructional materials, and then go back and read the text that corresponds to that unit, reviewing the figures again as you go. After completing the text, you will then go back over the figures alone for another time. This will allow interaction with the materials, and also provide repeated exposure to the data and concepts presented both visually and in written explanations. Hopefully, this will be fun and interesting, and you will retain new information far more efficiently than you would after just reading the text or listening to a lecture on this topic.

Follow these directions to optimize your learning and retention of "Essential Psychopharmacology".

1. Go through each chapter unit one by one, from beginning to end and in order.
2. View each figure and read each figure legend.
3. Next, read the text while reviewing each figure as you go.
4. Complete the written post-test, using the answer sheet located at the end of the textbook.
5. Review the figures once again, checking any answers of which you are uncertain.
6. Photocopy and fill out the evaluation for the unit you just completed.
7. Fill out the CME registration form.
8. Pay $10 for each category I CME credit you are claiming, or a discounted fee of $395 if you are claiming all 54 credits (a $540 value, or 25% discount off the individual unit price).
9. Send the test answers, evaluations and check for the appropriate amount, payable to "UCSD Department of Psychiatry" to:

 Stephen M. Stahl, M.D., Ph.D.
 Department of Psychiatry University of California San Diego 9500 Gilman Drive La Jolla, CA 93037
OVERALL CONTINUING MEDICAL EDUCATION OBJECTIVES 14

INDIVIDUAL EDUCATIONAL UNITS IN TOTAL

Up to 54 Hours of Category I Credits in Total

Upon completing this educational program, the participant should be able to:

1. Understand the scientific basis of chemical neurotransmission.
2. Know how abnormalities in neurotransmission underlie major psychiatric disorders, including depression, anxiety disorders, psychosis, and cognitive disorders, including dementia, and drug and alcohol abuse.
3. Know that psychotropic drugs act by specific modifications of chemical neurotransmission.
4. Understand the major psychiatric disorders treated with psychotropic agents, including depression, anxiety disorders, psychosis, cognitive disorders including dementia and drug and alcohol abuse.
5. Be able to understand the unique psychopharmacological mechanisms of action of the major antidepressants, anxiolytics, antipsychotics, cognitive enhancing agents, and drugs of abuse.
6. Be knowledgeable of the mechanism of therapeutic action versus the side effects of the major members of each class of psychotropic agents.

Please see each individual unit for the specific objectives of each individual unit.

UNIT 1: PRINCIPLES OF CHEMICAL NEUROTRANSMISSION

Up to 3 Hours of Category I CME Credit

Objectives

1. To learn all three dimensions of neurotransmission: namely the spacial dimension, the dimension of time and the dimension of function.
2. To understand the spacial dimension as a chemically addressed vs. an anatomically
dressed nervous system.

3. To understand the time dimension by knowing the difference between fast onset
vs. slow onset chemical neurotransmission.

4. Understand the functional dimension of neurotransmission, gaining familiarity
with excitation secretion coupling, receptor occupancy, and second messenger
systems.

5. To gain an overview of molecular neurobiology as a basis for subsequent concepts
developed later in this text, including how chemical neurotransmission results in
the activation of neuronal genes.

6. To gain an overview of neuronal plasticity, as a basis for understanding the aging
process, the development of the brain, and the action of growth factors.

Self Assessment and Post Test

1. Please indicate which of the following is true for synaptic neurotransmission.
 a. An electrical impulse jumps from one nerve to another
 b. A chemical impulse jumps from one nerve to another
 c. An electrical impulse in one nerve is converted to a chemical impulse at the
 synaptic connection between two nerves which is then reconverted into an
 electrical impulse in the second nerve
 d. An electrical impulse in one nerve is converted to a chemical impulse at the
 synaptic connection between two nerves which is then converted into a chem-
 ical cascade reaching the post-synaptic genome
 e. c and d

2. The anatomically addressed nervous system is analogous to a complex wiring
diagram. True or False.

3. The chemically addressed nervous system acts via a sophisticated chemical soup.
 True or False.

4. Some neurotransmitters act faster than others. True or False.

5. Glutamate is the universal excitatory neurotransmitter. True or False.

6. GABA is the universal excitatory neurotransmitter. True or False.

7. GABA and glutamate act by fast signals and not by slow signals. True or False.

8. Other neurotransmitters such as serotonin and norepinephrine act as slow neu-
 rotransmitters. True or False.

9. The headquarters or command center for the neuron is the DNA in its cell
 nucleus located in the cell body. True or False.

10. Receptor occupancy by neurotransmitters is specific to a single neurotransmitter
 and acts like a key fitting into a receptor lock. True or False.

11. Each neuron only contains one neurotransmitter. True or False.
12. Enzymes and receptors are both proteins synthesized in the cell body by the neuron's cell nucleus. True or False.

13. Alterations in the structure of an enzyme or a receptor can lead to a disease. True or False.

14. Once the brain is wired at the beginning of life, it stays that way forever and does not have the capability of changing once an individual reaches adulthood. True or False.

15. Although it has classically been held that neurons do not replicate after birth, recent evidence suggests that there may be replication of neurons in the mammalian brain, possibly even in humans. True or False.

16. The degree of branching of the dendritic tree of a neuron may imply how much functioning that neuron can perform. True or False.

17. Growth factors can promote synaptic connections. True or False.

18. The brain has a mechanism for revising synapses and even eliminating them throughout the lifetime of a neuron. True or False.

19. A second messenger is electrical, not chemical. True or False.

20. Some therapeutic drugs like Valium, Elavil and morphine as well as some drugs of abuse such as heroin and marijuana can act very similarly to naturally occurring neurotransmitters in the brain. True or False.

Evaluation

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall this unit met my expectations to learn about principles of chemical neurotransmission.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about chemical neurotransmission was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing chemical neurotransmission and brain function was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing neurobiology and brain functioning was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 2: RECEPTORS AND ENZYMES AS THE TARGETS OF DRUG ACTION

Up to 3 Hours of Category I CME Credit

Objectives

1. To understand how receptors and enzymes are the targets of drug action.
2. To learn about the organization of receptor molecules, including the three parts of each receptor.
3. To gain familiarity with ion channels, transport carriers and active transport pumps.
4. To gain familiarity with second messenger systems.
5. To understand how drugs may modify chemical neurotransmission by interacting with receptors.
6. To understand how drugs may modify chemical neurotransmission by interacting with enzymes.
Self Assessment and Post Test

1. Psychopharmacological agents act by:
 a. Inhibiting enzymes
 b. Antagonizing receptors
 c. Stimulating receptors
 d. All of the above

2. Which is not a property of the receptor super family of G protein linked receptors?
 a. Seven transmembrane regions
 b. Presence of a G protein
 c. Presence of an enzyme
 d. Presence of a second messenger
 e. Presence of an ion channel

3. A receptor is a chain of:
 a. Amino acids
 b. Fatty acids
 c. Sugars
 d. Fats

4. One of the most common organizations of a receptor in the central nervous system is for it to weave in and out of the cell membrane seven times thus creating seven transmembrane regions. True or False.

5. Transmembrane regions of receptors can be quite similar from one family of receptors to the next. True or False.

6. A neurotransmitter released from a neuron travels to a post synaptic neuron and:
 a. Interacts with a receptor in the membrane of the second neuron
 b. Gets inside the cell where it acts as a second messenger
 c. Travels straight to the nucleus of the second neuron
 d. None of the above

7. Receptors are theoretical sites of malfunctioning which could lead to nervous or mental disorders. True or False.

8. Neurotransmitters can serve as a gatekeepers to open or close a channel for an ion in a neuronal membrane. True or False.

9. Transport carriers act as a shuttle bus to allow molecules to get from the outside of the cell to the inside of the cell. True or False.

10. An active transport pump is a type of transport carrier which is linked to an energy utilizing system. True or False.

11. Neurotransmitter reuptake from the synapse is an example of molecular transport using an active transport pump. True or False.

12. In the neurotransmission process, the first event is the firing of the presynaptic neuron which releases neurotransmitter. True or False.
13. Once a neurotransmitter interacts with the receptor, it:
 a. Diffuses off the receptor
 b. Can be destroyed by enzyme
 c. Can be transported back into the presynaptic neuron
 d. All of the above

Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about receptors and enzymes was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology receptors was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of enzymes was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The explanation for how various chemicals work together in neurotransmission was explained well.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this training unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this training unit to your clinical practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 3: SPECIAL PROPERTIES OF RECEPTORS

Up to 2 Hours of Category I CME Credit

Objectives

1. To understand how receptors can have multiple subtypes.
2. To know the difference between an agonist and an antagonist.
3. To know the difference between an inverse agonist and an antagonist.
4. To understand both positive allosteric modulation and negative allosteric modulation.

Self Assessment and Post Test

1. Allosteric modulation is:
 a. Two drugs competing for the same enzyme or receptor at the same site
 b. One drug helping or inhibiting another drug at the same receptor but at a different site on that receptor
 c. Unrelated to the presumed mechanism of action of any psychotropic drugs
 d. Presumed to be the cause of depression

2. There is only one type of receptor for each neurotransmitter. For example, there is only one serotonin receptor type. True or False.

3. Which is not a property of the super family of ligand gated ion channels?
 a. Neurotransmitter as gatekeeper ligand
 b. A G protein
 c. Allosteric modulating sites
 d. A column of receptors surrounding a central ion site

4. An agonist is the opposite of an antagonist. True or False.

5. An inverse agonist is the opposite of an agonist. True or False.

6. A partial agonist is in between a full agonist and an antagonist. True or False.

7. An antagonist can reverse both an agonist and an inverse agonist. True or False.

8. A partial agonist can be a net agonist when neurotransmitter is deficient but a net antagonist when a neurotransmitter is in excess. True or False.

9. Allosteric modulators help a neurotransmitter or hinder a neurotransmitter performing that neurotransmitter function. True or False.

10. There are two major super families of receptors including:
 a. Ligand gated ion channel
 b. Seven transmembrane G protein linked second messenger systems
 c. Allosteric modulators
 d. Both a and b
Evaluation

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about special properties of receptors and enzymes was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of agonists and antagonists was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing allosteric modulation was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time spent reviewing receptor super-families was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What topics would you like to see deleted or condensed from the unit?

What topics would you like to see added or expanded in the unit?

What is your overall opinion of this training unit?

What is your overall opinion of the usefulness of this training unit to your clinical practice?

UNIT 4: CHEMICAL NEUROTRANSMISSION AS THE MEDIATOR OF DISEASE ACTIONS

Up to 2 Hours of Category I CME Credit

Objectives

1. To understand receptors and enzymes as targets of disease action in the central nervous system.
2. To understand the differences among three disciplines: neuroscience, biological psychiatry and psychopharmacology.

3. To understand various ways in which diseases modify synaptic neurotransmission, including molecular neurobiology and psychiatric disorders.

4. To understand how neuronal plasticity can impact psychiatric disorder.

5. To understand general principles of excitotoxicity.

6. To understand other mechanisms of disease action, including no neurotransmission, too much neurotransmission and ineffective wiring.

Self Assessment and Post Test

1. Complex genetics suggests that psychiatric disorders are:
 a. Due to a single gene mutation
 b. Due to two gene mutations which cause all persons with such genetic abnormalities to manifest an illness
 c. The cause of psychiatric disorder is predominantly environmental
 d. Multiple lesions in the victim's DNA must be present in the right sequence and during the correct critical periods possibly with the need to have specific environmental inputs simultaneously in order to manifest the psychiatric illness

2. Neurobiology is the study of brain and neuronal functioning usually emphasizing normal brain functioning in experimental animals rather than man. True or False.

3. Biological psychiatry is the discipline evaluating abnormalities in brain biology associated with the causes or consequences of mental disorders. True or False.

4. Psychopharmacology is the discipline of discovering new drugs and understanding the actions of drugs upon the central nervous system. True or False.

5. Which of the following is not a key factor in the development of a psychiatric disorder:
 a. Genetic vulnerability to the expression of a disease
 b. Life event stressors
 c. The individual's personality, coping skills and social support
 d. Environmental influences
 e. All of the above are critical

6. For a neuron to develop properly, it must have adequate plasticity. True or False.

7. The neuron has a mechanism to destroy its synapses called excitotoxicity. True or False.

8. If excitotoxicity gets out of control, it could potentially destroy a dendrite or an entire neuron. True or False.

9. Drugs may at times be able to replace neurotransmitters which are absent from a synapse due to the death of a neuron. True or False.
10. Glutamate is the neurotransmitter which mediates excitatory neurotransmission as well as excitotoxicity. True or False.

11. Potassium is the ion which works with glutamate to mediate both excitation and excitotoxicity. True or False.

Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall this unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about how chemical neurotransmission is the target of disease action was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the disciplines of neuroscience, biological and psychopharmacology was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing molecular neurobiology and neuroplasticity was about right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing excitotoxicity was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your clinical practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 5: DEPRESSION AND BIPOLAR DISORDERS

Up to 6 Hours of Category 1 CME Credit

Objectives

1. To review the diagnostic criteria for depression and bipolar disorders.
2. To review the definitions of response, remission and recovery.
3. To learn the epidemiology and natural history as well as longitudinal course of depression.
4. To understand the biological basis of depression, including the monoamine hypothesis, the neurotransmitter receptor hypothesis and the hypothesis of reduced activation of brain neurotrophic factors.
5. To understand the functioning of noradrenergic, dopaminergic and serotonergic neurons.

Self Assessment and Post Test

1. The standard(s) usually targeted by studies seeking approval of most new antidepressants is (are):
 a. Response rates
 b. Remission rates
 c. Recovery rates
 d. Both a and b
 e. All of the above

2. Risk of relapse from depression is related to:
 a. The number of previous episodes
 b. Incomplete recovery
 c. Severity of index episode of depression
 d. Duration of index episode of depression
 e. All of the above

3. What is the best estimate for the risk of relapse into another episode of depression if an antidepressant is stopped within the first 6 to 12 months following a treatment response:
 a. Less than 5%
 b. At least 10%
 c. At least 33%
 d. At least 50%

4. What is the best estimate for the risk of relapse into another episode of depression while taking an antidepressant for the first six months following a treatment response:
 a. Less than 5%
 b. At least 10%
 c. At least 33%
 d. At least 50%
5. The chances of a depressed patient responding to any known antidepressant is one out of three.
 a. True
 b. False

6. The chances of a depressed patient responding to a placebo is one out of three.
 a. True
 b. False

7. Presynaptic alpha 2 receptors:
 a. Control norepinephrine release
 b. Control serotonin release
 c. Both
 d. Neither

8. Which serotonin receptor(s) is (are) most involved with regulating the release of serotonin?
 a. 5HT1A
 b. 5HT1D
 c. 5TH2A
 d. Both a and b
 e. All the above

9. The locus coeruleus is the principal location of the cell bodies of serotonergic neurons.
 a. True
 b. False

10. The locus coeruleus in the brainstem is the principal location of the cell bodies of nonadrenergic neurons.
 a. True
 b. False

11. The monoamine hypothesis of depression suggests that depression is predominantly caused by deficiency of serotonin.
 a. True
 b. False

12. The monoamine receptor hypothesis of depression suggests that depression is caused predominantly by an absence of key monoamine receptors in the brain.
 a. True
 b. False

13. The monoamine receptor hypothesis of gene activation suggests that depression is caused by:
 a. A problem in monoamines activating critical neuronal genes
 b. An inherited genetic deficiency in a specific gene for monoamines
 c. Stress-induced reduction in the expression of genes for neurotrophic factors such as BDNF
 d. a and c
 e. All of the above
14. The neurokinin neurotransmitters include:
 a. Substance P
 b. Neurokinins A and B
 c. Tachykinins 1 and 2
 d. a and b

15. Neurokinin receptor antagonists:
 a. Are effective in reducing pain
 b. Are potential antidepressants
 c. Are effective in reducing neurogenic inflammation

Evaluation

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Somewhat Agree in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge of depression was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the natural history and longitudinal course of depression was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing neurotransmitter pharmacology was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing biological theories of depression was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your clinical practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 6: CLASSICAL ANTIDEPRESSANTS, SEROTONIN SELECTIVE REUPTAKE INHIBITORS AND NOREPINEPHRINE REUPTAKE INHIBITORS

Up to 4 Hours of Category I CME Credit

Objectives

1. To review the monoamine receptor hypothesis of depression.

2. To review the two classical categories of antidepressants, namely MAO inhibitors and tricyclic antidepressants.

3. To review the mechanism of action of the five serotonin selective reuptake inhibitors.

4. To review adrenergic modulators such as dopamine and norepinephrine uptake inhibitors.

5. To review selective inhibitors of norepinephrine reuptake.

6. To understand how drug actions can explain not only therapeutic effects but also side effects for antidepressants.

7. To review pharmacokinetic interactions of antidepressants with other drugs.

Self Assessment and Post Test

1. All antidepressants act by inhibiting the reuptake pump for serotonin, norepinephrine, or both.
 a. True
 b. False

2. When tricyclic antidepressants are given concomitantly with SSRIs such as fluoxetine or paroxetine:
 a. Plasma levels of the tricyclic antidepressants may rise
 b. Plasma levels of the tricyclic antidepressants may fall
 c. Plasma levels of fluoxetine or paroxetine may rise
 d. a and c

3. MAO inhibitors should not be administered concomitantly with:
 a. SSRIs (serotonin selective reuptake inhibitors)
 b. Meperidine
 c. Tyramine-containing foods
 d. All of the above

4. The mechanism of therapeutic action of SSRIs is:
 a. Stimulation of the serotonin transport pump
 b. Increasing the sensitivity of 5HT2A receptors
 c. Desensitizing somatodendritic 5HT1A autoreceptors
 d. None of the above
5. Side effects of the SSRIs such as anxiety, insomnia and sexual dysfunction may be mediated by stimulation of which serotonin receptor subtype?
 a. 5HT1A
 b. 5HT1D
 c. 5HT2A
 d. 5HT3

6. At high doses, which secondary property may apply to sertraline:
 a. 5HT2C agonist actions
 b. Blockade of dopamine transporters
 c. Blockade of muscarinic cholinergic receptors
 d. Blockade of cytochrome P450 1A2
 e. None of the above

7. At high doses, which secondary property may apply to fluoxetine:
 a. 5HT2C agonist actions
 b. Blockade of dopamine transporters
 c. Blockade of muscarinic cholinergic receptors
 d. Blockade of cytochrome P450 1A2
 e. None of the above

8. At high doses, which secondary property may apply to paroxetine:
 a. 5HT2C agonist actions
 b. Blockade of dopamine transporters
 c. Blockade of muscarinic cholinergic receptors
 d. Blockade of cytochrome P450 1A2
 e. None of the above

9. At high doses, which secondary property may apply to citalopram:
 a. 5HT2C agonist actions
 b. Blockade of dopamine transporters
 c. Blockade of muscarinic cholinergic receptors
 d. Blockade of cytochrome P450 1A2
 e. None of the above

10. The therapeutic action of bupropion is mediated in part via direct interactions with serotonergic neurotransmission.
 a. True
 b. False

11. The therapeutic action of reboxetine is mediated in part via direct interactions with serotonergic neurotransmission.
 a. True
 b. False

12. Increasing norepinephrine may cause:
 a. Antidepressant effects
 b. Improvement in attention
 c. Increase in motivation/reduction of apathy
 d. All of the above
Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about tricyclic antidepressants was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of classical antidepressants, including tricyclic antidepressants and MAO inhibitors, was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about serotonin selective reuptake inhibitors was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing serotonin selective reuptake inhibitors was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT 7: NEWER ANTIDEPRESSANTS AND MOOD STABILIZERS

Up to 4 Hours of Category I CME Credit

Objectives

1. To review the mechanism of action of dual reuptake inhibitors such as venlafaxine as well as other dual action antidepressants such as mirtazapine, and serotonin 2A antagonists such as nefazodone.
2. To review the mechanism of action of lithium and five anticonvulsants used as mood stabilizers (valproic acid, carbamazepine, lamotrigine, gabapentin and topiramate).

3. To discuss the use of antidepressants in combination with other drugs and antidepressants for the treatment of patients nonresponsive to monotherapies for depression and bipolar disorders.

Self Assessment and Post Test

1. Which of the following are serotonin 2A antagonists:
 a. Fluoxetine
 b. Nefazodone
 c. Paroxetine
 d. Mirtazapine
 e. b and d

2. Blocking a monoamine reuptake pump with an antidepressant can oppose the actions of drugs which block presynaptic alpha 2 receptors.
 a. True
 b. False

3. Dual neurotransmitter action at both serotonin and norepinephrine is possible only by combining two different psychopharmacological agents simultaneously.
 a. True
 b. False

4. Which of the following does not have selectivity for the noradrenaline transporter over the serotonin transporter:
 a. Desipramine
 b. Maprotiline
 c. Reboxetine
 d. Venlafaxine

5. Venlafaxine is a dual reuptake inhibitor of both serotonin and norepinephrine with equal potency for both transporters.
 a. True
 b. False

6. Lithium:
 a. Inhibits inositol monophosphatase
 b. Interacts with second messenger systems
 c. Blocks monoamine reuptake
 d. a and b
 e. All of the above

7. Which mood stabilizers are thought to act in part by interacting with ion channels:
 a. Carbamazepine
 b. Valproic acid
 c. Lithium
d. a and b
e. All of the above

8. Antidepressants can worsen depression in patients with bipolar disorders by inducing mania or rapid cycling.
 a. True
 b. False

9. Successful combinations of drugs for treating depressed patients resistant to monotherapies exploit pharmacologic synergies, where the total therapeutic effect may be greater than the sum of the parts.
 a. True
 b. False

10. The most accurate statement about psychotherapy for depression is that psychotherapy:
 a. Can be used instead of antidepressants for patients with marked to severe depression
 b. Has been proven to be useful for depression in all its different types, including psychodynamic, group, cognitive, behavioral and psychoanalytical psychotherapies
 c. Has been demonstrated to be synergistic with antidepressants for standard cognitive behavioral psychotherapy
 d. All of the above

Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about dual action antidepressants was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of venlafaxine, mirtazapine and nefazodone was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing mood stabilizers was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing antidepressant combinations was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 8: ANXIOLYTICS AND SEDATIVE HYPNOTICS

Up to 4 Hours of Category 1 CME Credit

Objectives

1. To review a clinical description of generalized anxiety.
2. To gain an overview of the biological basis of anxiety emphasizing gamma aminobutyric acid (GABA) and benzodiazepines.
3. To gain an overview of the biological basis of anxiety with an emphasis on norepinephrine and the locus coeruleus.
4. To gain an overview of the biological basis of anxiety emphasizing the role of serotonin.
5. To discuss how the treatment of anxiety disorders is transitioning from anxiolytics such as benzodiazepines to various antidepressants.
6. To discuss and understand the mechanism of action of benzodiazepines in the treatment of anxiety.
7. To understand the role of serotonin 1A partial agonists in the treatment of anxiety.
8. To gain perspective on long term possibilities for future treatments of anxiety.
9. To review a clinical description of insomnia and sleep disorders.
10. To review the drug treatments for insomnia, including newer nonbenzodiazepine hypnotics as well as benzodiazepine and other hypnotics.
Self Assessment and Post Test

1. Which of the following is an effective treatment for generalized anxiety disorder.
 a. Benzodiazepines
 b. Buspirone
 c. Venlafaxine
 d. a and b
 e. All the above

2. Generalized anxiety disorder is more likely to remit spontaneously or with treatment than is major depressive disorder.
 a. True
 b. False

3. If a full agonist benzodiazepine reduces anxiety, it would follow that an inverse agonist benzodiazepine would actually produce anxiety.
 a. True
 b. False

4. All of the following are true for benzodiazepines except:
 a. They are allosteric modulators of the GABA A receptor subtype
 b. They are cotransmitters with GABA itself for the GABA A receptor subtype
 c. They facilitate the influx of chloride to a cell
 d. They facilitate the inhibition of neural firing

5. The locus coerulus:
 a. Is the principle site of axon terminals for the noradrenergic system
 b. Can regulate serotonergic cell firing by its innervation of the raphe
 c. Theoretically malfunctions in obsessive compulsive disorder
 d. Regulates release of norepinephrine from its neurons through presynaptic alpha 1 receptors.

6. Buspirone's mechanism of action is:
 a. Like the benzodiazepines only on serotonin neurons
 b. Partial agonist actions on serotonin 2A receptors
 c. Partial agonist actions on serotonin 1A receptors
 d. Partial agonist actions on serotonin 1A and serotonin 2A receptors

7. Excessive activity of noradrenergic neurons can accompany some of the signs and symptoms of anxiety.
 a. True
 b. False

8. Generalized anxiety disorder (GAD) is distinct from major depressive disorder with anxiety in that it is unusual for a patient to have GAD at one point in time and major depressive disorder with anxiety at another time.
 a. True
 b. False
9. GAD is distinct from major depressive disorder with anxiety in that the drugs which are well documented to treat major depressive disorder with anxiety are not necessarily also well documented to treat GAD.
 a. True
 b. False

10. There is no major difference in outcome or risk factors for major depressive disorder with anxiety versus major depressive disorder without anxiety.
 a. True
 b. False

Evaluation

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about the clinical features and biological basis anxiety was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the use of antidepressants and anxiolytics for the treatment of anxiety was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing insomnia and sleep disorders was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing sedative hypnotics for the treatment of insomnia was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your clinical practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 9: DRUG TREATMENTS FOR OBSESSIVE COMPULSIVE DISORDER, PANIC DISORDER AND PHOBIC DISORDERS

Up to 4 Hours of Category I CME Credit

Objectives

1. To review a clinical description of obsessive compulsive disorder.
2. To review the biological basis of obsessive compulsive disorder based upon serotonin and dopamine.
3. To review drug treatments of obsessive compulsive disorder, emphasizing serotonin reuptake inhibitors.
4. To review the clinical description of panic attacks and panic disorders.
5. To review the biological basis of panic attacks and panic disorder.
6. To review the drug treatments of panic disorder, including benzodiazepines, serotonin selective reuptake inhibitors, cognitive behavioral therapy and other treatments.
7. To review the clinical description and pharmacological treatments for phobic disorders, including social phobia.
8. To review the clinical description and pharmacological treatments for post traumatic stress disorder.

Self Assessment and Post Test

1. The therapeutic efficacy and onset of action of an SSRI in obsessive compulsive disorder is very similar to that of an SSRI in major depressive disorder.
 a. True
 b. False

2. Only those SSRIs with FDA approved indications for different anxiety disorder subtypes actually are efficacious in such anxiety disorder subtypes.
 a. True
 b. False

3. It is best to start with a higher dose of an SSRI for the treatment of panic compared to the dose of an SSRI for the treatment of depression.
 a. True
 b. False

4. It is best to start with a higher dose of an SSRI for the treatment of bulimia compared to the dose of an SSRI for the treatment of depression.
 a. True
 b. False
5. The tricyclic antidepressant desipramine is effective in panic disorder and obsessive compulsive disorder.
 a. True
 b. False

6. A leading theory of panic disorders called the false suffocation alarm theory, postulates that false alarm is triggered by the brain during a panic attack.
 a. True
 b. False

7. SSRIs are the only antidepressants which have efficacy in the treatment of panic disorder.
 a. True
 b. False

8. Behavioral therapies and cognitive therapies are commonly less effective for the treatment of panic disorder and obsessive compulsive disorder than are the SSRIs.
 a. True
 b. False

9. If an SSRI is effective in an anxiety disorder, this implies that serotonin levels are deficient in that anxiety disorder.
 a. True
 b. False

10. If an SSRI is effective in an anxiety disorder, this implies that enhanced serotonergic neurotransmission is therapeutic for that anxiety disorder.
 a. True
 b. False

Evaluation

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about anxiety disorder subtypes including obsessive compulsive disorder and panic disorder was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of treatments for OCD was just right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 10: PSYCHOSIS AND SCHIZOPHRENIA

Up to 4 Hours of Category I CME Credit

Objectives

1. To review the clinical descriptions of psychosis.

2. To understand the difference between paranoid, disorganized and depressive psychosis.

3. To discuss the five dimensions of symptoms in schizophrenia, including positive, negative, cognitive, aggressive/hostile and anxious/depressed symptoms.

4. To review the biological basis of the positive psychotic symptoms.

5. To understand the different functions of the various dopamine pathways in the brain, including the mesolimbic dopamine pathway, the nigrostriatal dopamine pathway, the mesocortical dopamine pathway and the tuberoinfundibular dopamine pathway.
6. To review neurodevelopmental and neurodegenerative hypotheses of schizophrenia.

Self Assessment and Post Test

1. A psychotic disorder is defined as one with delusions, hallucinations, and a thought disorder. True or False.

2. Schizophrenia and drug induced psychotic disorders require the presence of psychosis as a defining feature of the diagnosis. True or False.

3. Mania, depression, and cognitive disorders like Alzheimer's disease may or may not be associated with psychotic features. True or False.

4. Paranoid psychosis is characterized by severe retardation, apathy and anxious self-punishment and blame. True or False.

5. It is rare for a schizophrenic patient to commit suicide. True or False.

6. Schizophrenia is more common than depression. True or False.

7. The following are characteristic of the negative symptoms of schizophrenia except:
 a. Affective flattening
 b. Alogia
 c. Anhedonia
 d. Acalculia

8. The leading hypothesis for explaining the positive symptoms of psychosis is the overactivity of dopamine in the nigrostriatal dopamine pathway. True or False.

9. Movement disorders are mediated by abnormalities in the mesolimbic dopamine pathway. True or False.

10. The tuberoinfundibular dopamine pathway mediates the secretion of prolactin. True or False.

11. Prolonged blockade of dopamine receptors in the nigrostriatal pathway may lead to an increased sensitization of post-synaptic dopamine 2 receptors and a disorder called:
 a. Parkinsonism
 b. New symptoms of schizophrenia
 c. Tardive dyskinesia
 d. Galactorrhea

12. The severity of which dimension of symptoms in schizophrenia is best correlated with long term outcome:
 a. Positive symptoms
 b. Cognitive symptoms
 c. Affective symptoms
 d. a and b
13. Cognitive deficits in schizophrenia
 a. Include problems with sustaining and focusing attention, and prioritizing and modulating behaviors based upon social cues
 b. Include problems with verbal fluency and serial learning
 c. Resemble the short term memory deficits seen in Alzheimer’s disease
 d. a and b
 e. All the above

14. A neurodevelopmental etiology for schizophrenia is suggested by all the following except:
 a. Increased incidence in those with obstetric complications in utero
 b. Premorbid and prodromal negative and cognitive symptoms in childhood and adolescence prior to onset of psychotic symptoms
 c. Increased incidence in first degree relatives
 d. Adult onset of psychotic symptoms with a downhill course during adulthood

15. A neurodegenerative etiology for schizophrenia is suggested by:
 a. Functional and structural abnormalities of brains in schizophrenic patients
 b. A downhill course after onset of psychosis
 c. Less responsiveness to antipsychotic medications the longer treatment is delayed and the more episodes of illness experienced
 d. a and c
 e. All the above

Evaluation

<table>
<thead>
<tr>
<th>Overall the unit met my expectations.</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>My general knowledge about psychosis was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the five dimensions of clinical symptoms of schizophrenia was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the dopamine pathways in the brain was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing neurodevelopmental and neurodegenerative theories of schizophrenia was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in the unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT 11: ANTIPSYCHOTIC AGENTS

Up to 6 Hours of Category 1 CME Credit

Objectives

1. To review the pharmacology of conventional antipsychotic treatments: the neuroleptics.
2. To contrast the older conventional antipsychotics with the newer atypical antipsychotics.
3. To review the importance of serotonin 2A antagonism to the atypical clinical properties of atypical antipsychotics.
4. To review the regulatory role of serotonin in each of the four major dopamine pathways.
5. To explain why atypical antipsychotics have fewer extrapyramidal side effects, less tardive dyskinesia, less prolactin elevation and better improvement of negative and cognitive symptoms of schizophrenia compared to conventional antipsychotics.
6. To review the unique pharmacological properties of several atypical antipsychotics, including olanzapine, risperidone, quetiapine, clozapine, ziprasidone and others.
7. To discuss the pharmacokinetics and drug interactions of atypical antipsychotics.
8. To discuss new drug discovery efforts in schizophrenia, including serotonin dopamine antagonists and other novel agents such as those based upon molecular and neurodevelopmental approaches to drug discovery.
Self Assessment and Post Test

1. The first treatments for schizophrenia were based upon the knowledge that dopamine was hyperactive in the brain. True or False

2. Conventional antipsychotic drugs are also called neuroleptics. True or False.

3. Atypical antipsychotic drugs
 a. Can theoretically block mesolimbic dopamine 2 receptors preferentially, compared to nigrostriatal dopamine 2 receptors
 b. Have selective dopamine 2 antagonist properties whereas conventional antipsychotics have serotonin 2A antagonist properties as well as dopamine 2 antagonist properties.
 c. Have less EPS side effects but also less efficacy for positive symptoms than conventional antipsychotics
 d. None of the above

4. Clozapine is the atypical antipsychotic best documented to improve psychotic symptoms which are resistant to treatment with conventional antipsychotics. True or False.

5. Which of the following serotonin dopamine antagonists (SDAs) is not considered to be a first line atypical antipsychotic drug?
 a. Risperidone
 b. Quetiapine
 c. Loxapine
 d. Olanzapine

6. The pharmacological property which all atypical antipsychotics share is serotonin dopamine antagonism. True or False.

7. The new atypical antipsychotics including risperidone, olanzapine and quetiapine act by:
 a. Blocking dopamine-2 receptors
 b. Blocking serotonin-2 receptors
 c. Both of the above
 d. None of the above

8. The ratio between the blockade of serotonin receptors and dopamine receptors differs for various classes of antipsychotic drugs. True or False.

9. The interaction between dopamine and serotonin in the nigrostriatal dopamine pathway may explain why serotonin dopamine antagonists have propensity for reducing extrapyramidal reactions. True or False.

10. Which pharmacologic properties in addition to serotonin 2A/dopamine 2 antagonism characterize one or more atypical antipsychotics?
 a. Dopamine 1, 3, and 4 antagonism
 b. Serotonin 1D, 3, 6 and 7 antagonism
 c. Serotonin and norepinephrine reuptake blockade
 d. Alpha 1, alpha 2, muscarinic and histaminic receptor blockade
 e. All of the above
11. Which atypical antipsychotics are substrates for CYP450 1A2?
 a. Clozapine
 b. Olanzapine
 c. Risperidone
 d. a and b
 e. All the above

12. Which atypical antipsychotics are substrates for CYP450 2D6?
 a. Risperidone
 b. Clozapine
 c. Olanzapine
 d. All of the above

13. Smoking could lower clozapine and olanzapine plasma levels. True or False.

14. Molecular approaches to the treatment of schizophrenia attempt to identify an abnormal gene product in order to compensate for this abnormality. True or False.

15. Treatment of schizophrenia in the future may involve the combinations of various mechanisms of action simultaneously. True or False.

Evaluation

<table>
<thead>
<tr>
<th>Overall the unit met my expectations.</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>My general knowledge about serotonin regulation of dopamine was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing conventional neuroleptic drugs was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the class of atypical antipsychotics was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing individual atypical antipsychotic drugs was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What topics would you like to see added or expanded in this unit?

What is your overall opinion of this unit?

What is your overall opinion of the usefulness of this unit to your practice?

UNIT 12: COGNITIVE ENHANCERS

Up to 4 Hours of Category I CME Credit

Objectives

1. To review the clinical description of cognitive disorders, including both disorders of attention and disorders of memory.
2. To review the psychopharmacology of attention, including the roles of norepinephrine and dopamine.
3. To review the use of stimulants in disorders of attention, including attention deficit disorder in children and adults.
4. To discuss the role of acetylcholine pharmacology and cholinergic pathways in mediating memory functions.
5. To discuss how memory disorders, including Alzheimer's disease, impact cholinergic neurotransmission.
6. To discuss the new cholinesterase inhibitors and treatments for enhancing memory or slowing the pace of memory loss in Alzheimer's disease.
7. To compare and contrast the cholinesterase inhibitors tacrine, donepezil, metrifonate, rivastigmine, and others.
8. To review the neuropathology of Alzheimer's disease, and its relationship to the amyloid cascade hypothesis and the glutamate excitotoxic hypothesis of Alzheimer's disease.
9. To discuss future cognitive enhancers, including enhancement of attention and memory.

Self Assessment and Post Test

1. Disorders of attention may be mediated via disruption of dopaminergic and/or noradrenergic neurotransmission in the cerebral cortex. True or False
2. The following are enhancers of attention in attention deficit disorder:
 a. Stimulants such as methylphenidate and d-amphetamine
 b. Alpha 2 agonists such as guanfacine and clonidine
 c. Stimulating antidepressants such as bupropion
 d. a and b
 e. All of the above

3. What is true about the pharmacology of d-amphetamine versus the pharmacology of d,l-amphetamine?
 a. d-Amphetamine acts at both norepinephrine and dopamine synapses whereas d,l-amphetamine acts predominantly at dopamine synapses
 b. d-Amphetamine acts predominantly at dopamine synapses whereas d,l-amphetamine acts at both dopamine and norepinephrine synapses
 c. d-Amphetamine acts predominantly at norepinephrine synapses
 d. d,l-Amphetamine acts predominantly at dopamine synapses

4. In attention deficit hyperactivity disorder
 a. Inattention and hyperactivity are both mediated by the nigrostriatal dopamine pathway
 b. Inattention and hyperactivity are both mediated by the mesocortical dopamine pathway
 c. Inattention is mediated by the mesocortical dopamine pathway but hyperactivity is mediated by the nigrostriatal dopamine pathway
 d. Inattention is mediated by the nigrostriatal dopamine pathway but hyperactivity is mediated by the nigrostriatal dopamine pathway.

5. Acetylcholine can be destroyed by:
 a. Acetylcholinesterase
 b. Butyrylcholinesterase
 c. Both
 d. Neither

6. The area of the brain where acetylcholine controls memory includes:
 a. Cholinergic pathways throughout the brain
 b. Cholinergic pathways in brainstem and striatum
 c. Cholinergic pathways arising from the nucleus basalis of Meynert
 d. a and c

7. Alzheimer's disease is a clinical diagnosis and not a pathological diagnosis. True or False.

8. Neuropathology of Alzheimer's disease includes:
 a. Neuritic plaques
 b. Amyloid deposition
 c. Neurofibrillary tangles
 d. All of the above

9. The amyloid cascade hypothesis of Alzheimer's disease states that:
 a. The DNA codes for an abnormal amyloid precursor protein
 b. The amyloid precursor protein initiates a lethal chemical cascade in neurons resulting in the formation of plaques and tangles
c. Plaques and tangles are linked to the formation of dementia symptoms in patients who develop these abnormalities in their neurons
d. All of the above

10. Apo-E is:
a. A binding protein which binds to beta amyloid and normally removes it
b. The amyloid itself
c. Only exists in an abnormal form
d. Is unrelated to theories of Alzheimer's disease

11. The pharmacological benefits of cholinesterase inhibitors include:
a. Functional improvement of central cholinergic neurotransmission at cholinergic synapses in the neocortex
b. Stimulation of both muscarinic and nicotinic cholinergic receptors
c. Possible protection against neuronal degeneration mediated through nicotinic receptor activation
d. Possible modification of amyloid precursor protein processing, mediated through muscarinic receptor activation
e. All of the above

12. Which of the following cholinesterase inhibitors is selective for acetylcholinesterase over butyrylcholinesterase:
a. Donepezil
b. Tacrine
c. Rivastigmine
d. Metrifonate
e. a and c

13. There are two major subtypes of acetyl choline receptors called:
a. Muscarinic and nicotinic
b. M1 and M2
c. Cholinergic and adrenergic

14. Current drugs approved for the treatment of Alzheimer's disease in the United States have the common mechanism of action being:
a. Blockade of cholinergic receptors
b. Direct stimulation of cholinergic receptors
c. Blockade of cholinesterase, destruction of acetyl choline
d. Enhancing release of acetyl choline

15. Treatments of Alzheimer's disease in the future will likely involve multiple pharmacology approaches with mixing and matching different mechanisms of therapeutic action. True or False.
<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about disorders of attention was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of stimulants for treating attention deficit was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of cholinergic neurons and cholinesterase inhibitors was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pathophysiology of disorders of memory, including Alzheimer's disease, was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT 13: PSYCHOPHARMACOLOGY OF REWARD AND DRUGS OF ABUSE

Up to 4 Hours of Category I CME Credit

Objectives

1. To define various terms used in the study of drug abuse, including use, abuse, dependence, intoxication, withdrawal.
2. To review the psychopharmacology of reward, with special reference to the mesolimbic dopamine pathway use and abuse of benzodiazepines.
3. To review the pharmacology of marijuana and the endocannabinoids (i.e., the brain's own marijuana).
4. To review the pharmacology of stimulants, including cocaine and amphetamine and their actions on dopaminergic systems.
5. To review the hallucinogens and designer drugs and their actions on serotonin neurons.
6. To review the pharmacology of phencyclidine and its actions on glutamate neurons.
7. To review the pharmacology of nicotine.
8. To review the pharmacology of alcohol, and agents to reduce alcohol consumption including acamprosate and naltrexone.
9. To review the pharmacology of the opiates.
10. To review the psychopharmacology of obesity.

Self Assessment and Post Test

1. DSM-IV has an accepted definition for addiction based upon a very severe form of drug abuse. True or False.
2. Benzodiazepines are rarely abused and are not known to create dependence or to produce withdrawal when discontinued. True or False.
3. There are three types of opiate receptors called alpha, beta and gamma. True or False.
4. Stimulants are thought to act predominantly upon the dopamine system. True or False.
5. Hallucinogens are thought to have important actions as partial agonists at serotonin-2A receptors. True or False.
6. Marijuana acts on:
 a. Norepinephrine receptors
 b. Serotonin receptors
c. Glutamate receptors
d. Endogenous cannabinoid receptors

7. Nicotine from smoking acts upon:
 a. Muscarinic cholinergic receptors
 b. Nicotinic cholinergic receptors
 c. Both a and b
 d. None of the above

8. A leading hypothesis for a final common pathway of drug abuse is the meso-limbic dopamine pathway and the psychopharmacology of pleasure. True or False.

9. Transdermal nicotine administration can assist in the withdrawal of:
 a. Alcohol
 b. Smoking cessation
 c. Benzodiazepine cessation

10. Pharmacology of alcohol is understood to be:
 a. Action as an enhancer of GABA neurotransmission
 b. Action as an inhibitor of glutamate neurotransmission
 c. Possible modulator of opioid systems
 d. Possible modulator of endogenous cannabinoid systems
 e. All of the above

11. Treatment of alcohol abuse and dependence can be facilitated by:
 a. Acamprosate which can reduce the withdrawal distress and craving when alcohol is withdrawn
 b. Naltrexone which blocks the euphoria of alcohol when alcohol is drunk
 c. 12 Step programs
 d. a and b
 e. All of the above

Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about drug abuse was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of stimulants, hallucinogens and opiates was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Agree</td>
<td>Somewhat in Agreement</td>
<td>Neutral</td>
<td>Somewhat Disagree</td>
<td>Strongly Disagree</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the pharmacology of marijuana, nicotine and alcohol was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the psychopharmacology of pleasure was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT 14: SEX-SPECIFIC AND SEXUAL FUNCTION-RELATED PSYCHOPHARMACOLOGY

Up to 4 'Hours of Category I CME Credit

Objectives

1. To explore the psychopharmacology of the human sexual response, including libido, arousal and orgasm.
2. To discuss the pathophysiology of erectile dysfunction (impotence) in men.
3. To review nitric oxide as a neurotransmitter system.
4. To review estrogen's function as a neurotrophic factor in the brain.
5. To clarify the role of estrogen and how it is linked to mood and mood disorders across the female life cycle.
6. To discuss the potential role of estrogen in cognitive function and cognitive disorders such as Alzheimer's disease.
Self Assessment and Post Test

1. Which psychopharmacological mechanism(s) are most closely linked to libido (sexual desire):
 a. Dopamine
 b. Prolactin
 c. Nitric oxide
 d. Phosphodiesterase
 e. a and b

2. Which psychopharmacological mechanism(s) are most closely linked to sexual arousal (i.e., erections in men and lubrication and swelling in women)
 a. Nitric oxide
 b. Acetylcholine
 c. Phosphodiesterase
 d. All of the above

3. Which neurotransmitter can inhibit orgasm (and ejaculation in men)?
 a. Nitric oxide
 b. Serotonin
 c. Acetylcholine
 d. Norepinephrine

4. What percentage of men with severe depression experience erectile dysfunction?
 a. 15%
 b. 33%
 c. 60%
 d. 90%

5. What is false about nitric oxide?
 a. It is an anesthetic
 b. It is present in car exhaust fumes
 c. It is synthesized from arginine
 d. Its target of neurotransmission is iron in the enzyme guanylate cyclase

6. Sildenafil (Viagra) is
 a. An inhibitor of nitric oxide synthetase (NOS)
 b. An inhibitor of guanylate cyclase
 c. An inhibitor of phosphodiesterase V
 d. An inhibitor of adenylate cyclase

7. Estrogen receptors
 a. Can form transcription factors when they bind to estrogen that activate genes called estrogen response elements
 b. Are active in brain only during neurodevelopment and sexual differentiation
 c. Have neurotrophic actions on monoamine neurons through the lifetime of both men and women
 d. a and c
 e. All of the above
8. Which of the following is true about depression and reproductive hormones?
 a. Depression is linked to testosterone levels in men across their life cycles
 b. Depression is linked to estrogen levels, especially rapid shifts in estrogen levels, in women across their life cycles
 c. Depression is linked to reproductive events in women
 d. b and c
 e. All the above

9. Which are the greatest periods of vulnerability for depression across the female life cycle?
 a. Prepubescence
 b. Postpartum
 c. Postmenopausal
 d. Perimenopausal
 e. b and c

10. Which of the following is not true about estrogen?
 a. It is an antidepressant with comparable efficacy to SSRIs in the treatment of major depressive disorder
 b. Can improve mood in perimenopausal women with prominent vasomotor symptoms such as hot flushes and insomnia
 c. Can enhance the actions of antidepressants in some women
 d. Can reduce the chances of developing Alzheimer's disease
 e. All are true

Evaluation

<table>
<thead>
<tr>
<th>Evaluation Statement</th>
<th>Strongly Agree</th>
<th>Somewhat in Agreement</th>
<th>Neutral</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall the unit met my expectations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My general knowledge about the role of neurotransmitters in the human sexual response was enhanced.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing the actions of psychotropic drugs upon libido, arousal and orgasm was just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing nitric oxide pharmacology and neurotransmission were just right.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The time spent reviewing estrogen as a neurotrophic factor, and its links to mood and cognition across the female life cycle was just right.</td>
<td>Strongly Agree</td>
<td>Somewhat in Agreement</td>
<td>Neutral</td>
<td>Somewhat Disagree</td>
<td>Strongly Disagree</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>What topics would you like to see deleted or condensed from this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What topics would you like to see added or expanded in this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of this unit?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is your overall opinion of the usefulness of this unit to your practice?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANSWER SHEET

UNIT 1: PRINCIPLES OF CHEMICAL NEUROTRANSMISSION

	a	b	c	d	e	n	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z						
1.	a	b	c	d	e	11. True	False																										
2.	True	False				12. True	False																										
3.	True	False				13. True	False																										
4.	True	False				14. True	False																										
5.	True	False				15. True	False																										
6.	True	False				16. True	False																										
7.	True	False				17. True	False																										
8.	True	False				18. True	False																										
9.	True	False				19. True	False																										
10.	True	False				20. True	False																										

UNIT 2: RECEPTORS AND ENZYMES AS TARGETS OF DRUG ACTION

	a	b	c	d	n	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z							
1.	a	b	c	d		8. True	False																										
2.	a	b	c	d	e	9. True	False																										
3.	a	b	c	d		10. True	False																										
4.	True	False				11. True	False																										
5.	True	False				12. True	False																										
6.	a	b	c	d		13. a	b	c	d																								
7.	True	False				14. True	False																										

UNIT 3: SPECIAL PROPERTIES OF RECEPTORS

	a	b	c	d		6. True	False																										
1.	a	b	c	d		7. True	False																										
2.	True	False				8. True	False																										
3.	a	b	c	d		9. True	False																										
4.	True	False				10. a	b	c	d																								
5.	True	False				11. True	False																										
UNIT 4: CHEMICAL NEUROTRANSMISSION AS THE MEDIATOR OF DISEASE ACTIONS

1. a b c d
2. True False
3. True False
4. True False
5. a b c d e
6. True False
7. True False
8. True False
9. True False
10. True False
11. True False

UNIT 5: DEPRESSION AND BIPOLAR DISORDERS

1. a b c d e
2. a b c d e
3. a b c d
4. a b c d
5. True False
6. True False
7. a b c d
8. a b c d e
9. True False
10. True False
11. True False
12. True False
13. a b c d e
14. a b c d
15. a b c

UNIT 6: CLASSICAL ANTIDEPRESSANTS, SEROTONIN SELECTIVE REUPTAKE INHIBITORS AND NORADRENERGIC REUPTAKE INHIBITORS

1. True False
2. a b c d
3. a b c d
4. a b c d
5. a b c d
6. a b c d e
7. a b c d e
8. a b c d e
9. a b c d e
10. True False
11. True False
12. a b c d

UNIT 7: NEWER ANTIDEPRESSANTS AND MOOD STABILIZERS

1. a b c d e
2. True False
3. True False
4. a b c d
5. True False
6. a b c d e
7. a b c d e
8. True False
9. True False
10. a b c d
UNIT 8: ANXIOLYTICS AND SEDATIVE HYPNOTICS

1. a b c d e 6. a b c d
2. True False 7. True False
3. True False 8. True False
4. a b c d 9. True False
5. a b c d 10. True False

UNIT 9: DRUG TREATMENTS FOR OBSESSIVE COMPULSIVE DISORDER, PANIC DISORDERS AND PHOBIC DISORDERS

1. True False 6. True False
2. True False 7. True False
3. True False 8. True False
4. True False 9. True False
5. True False 10. True False

UNIT 10: PSYCHOSIS AND SCHIZOPHRENIA

1. True False 9. True False
2. True False 10. True False
3. True False 11. a b c d
4. True False 12. a b c d
5. True False 13. a b c d e
6. True False 14. a b c d
7. a b c d 15. a b c d e
8. True False

UNIT 11: ANTIPSYCHOTIC AGENTS

1. True False 9. True False
2. True False 10. a b c d e
3. a b c d 11. a b c d e
4. True False 12. a b c d
5. a b c d 13. True False
6. True False 14. True False
7. a b c d 15. True False
8. True False
UNIT 12: COGNITIVE ENHANCERS

1. True False
2. a b c d e
3. a b c d
4. a b c d
5. a b c d
6. a b c d
7. True False
8. a b c d
9. a b c d
10. a b c d
11. a b c d e
12. a b c d e
13. a b c
14. a b c d
15. True False

UNIT 13: PSYCHOPHARMACOLOGY OF REWARD AND DRUGS OF ABUSE

1. True False
2. True False
3. True False
4. True False
5. True False
6. a b c d
7. a b c d
8. True False
9. a b c
ten. a b c d e
11. a b c d e

UNIT 14: SEX-SPECIFIC AND SEXUAL-FUNCTION RELATED PSYCHOPHARMACOLOGY

1. a b c d e
2. a b c d
3. a b c d
4. a b c d
5. a b c d
6. a b c d
7. a b c d e
8. a b c d e
9. a b c d e
10. a b c d e
Essential Psychopharmacology has established itself as the preeminent source of education and information in its field. This much expanded second edition relies on advances in neurobiology and recent clinical developments to explain with renewed clarity the concepts underlying drug treatment of psychiatric disorders. New neurotransmitter systems, theories on schizophrenia, clinical advances in antipsychotic and antidepressant therapy, coverage of attention deficit disorder, sleep disorders and drug abuse, and a new chapter on gender and sexual psychopharmacology are all features of this edition.

The fully revised text is complemented by many new illustrations, instructive and entertaining as before, and enhanced to reflect new knowledge and topics covered for the first time. The illustrations and their captions may be used independently of the main text for a rapid introduction to the field or for review. CME self-assessment tests are also included.

This edition will be even more essential for students, scientists, psychiatrists, and other mental health professionals, enabling them to master the complexities of psychopharmacology, and plan sound treatment approaches based on current knowledge.

Reviews of Essential Psychopharmacology, First Edition
“Essential reading . . . I would thoroughly recommend this book to anyone who works with psychotropic drugs – or who has the task of teaching others about them!”
– American Journal of Psychiatry

“Firmly grounded in contemporary neuroscience . . . an excellent and comprehensive account of the pharmacology of drugs currently used to treat psychiatric disorders.”
– Psychological Medicine

“This masterful production will benefit a broad spectrum of readers, from students to knowledgeable and experienced psychopharmacologists.”
– Psychiatric Times

Stephen M. Stahl is Adjunct Professor of Psychiatry at the University of California at San Diego. He has conducted numerous research projects awarded by the National Institute of Mental Health, the Veterans Administration, and the pharmaceutical industry. Author of more than 200 articles and chapters, Dr. Stahl is an internationally recognized clinician, researcher, and teacher in psychiatry with subspecialty expertise in psychopharmacology.